RESUMEN
BACKGROUND: Artemisiae Scopariae Herba (ASH) has been widely used as plant medicine in East Asia with remarkable antitumor activity. However, the underlying mechanisms have not been fully elucidated. METHODS: This study aimed to construct a multi-disciplinary approach to screen topoisomerase I (topo I) inhibitors from ASH extract, and explore the antitumor mechanisms. Bioaffinity ultrafiltration-UFLC-ESI-Q/TOF-MS/MS was used to identify chemical constitution of ASH extract as well as the topo I inhibitors, and in silico docking coupled with multiple complex networks was applied to interpret the molecular mechanisms. RESULTS: Crude ASH extract exhibited toxicogenetic and antiproliferative activities on A549 cells. A series of 34 ingredients were identified from the extract, and 6 compounds were screened as potential topo I inhibitors. Docking results showed that the formation of hydrogen bond and π-π stacking contributed most to their binding with topo I. Interrelationships among the 6 compounds, related targets and pathways were analyzed by multiple complex networks model. These networks displayed power-law degree distribution and small-world property. Statistical analysis indicated that isorhamnetin and quercetin were main active ingredients, and that chemical carcinogenesis-reactive oxygen species was the critical pathway. Electrophoretic results showed a therapeutic effect of ASH extract on the conversion of supercoiled DNA to relaxed forms, as well as potential synergistic effect of isorhamnetin and quercetin. CONCLUSIONS: The results improved current understanding of Artemisiae Scopariae Herba on the treatment of tumor. Moreover, the combination of multi-disciplinary methods provided a new strategy for the study of bioactive constituents in medicinal plants.
Asunto(s)
Quercetina , Ultrafiltración , Espectrometría de Masas en Tándem , Inhibidores de Topoisomerasa I/farmacología , Extractos Vegetales/farmacologíaRESUMEN
Scutellaria baicalensis Georgi (SBG) has been widely used as medical plant in East Asia with remarkable anti-cancer activity. However, the underlying mechanisms are still confused. In this study, an integrated analysis was conducted to screen topoisomerase I (topo I) inhibitors from flavonoids of SBG and investigate the anti-cancer mechanisms, containing bioaffinity ultrafiltration UPLC-ESI-TripleTOF-MS/MS, molecular docking, and multiple complex networks. The SBG extract exhibited notable cytotoxic activity on Hela cells. Five flavonoids were identified as potential topo I inhibitors, including skullcapflavone II, wogonin, chrysin, oroxylin A, and tenaxin I. Their ESI-MS/MS spectra showed that RDA reaction and neutral molecule loss were the main fragment patterns. Docking results demonstrated that π-π interaction and the formation of hydrogen bond contributed most to their binding with topo I. The selected compounds, related target proteins and pathways were integrated into target-based multiple complex networks, which consisted of three subnetworks. Statistical and topological analysis of these networks revealed a series of characteristics, including scale-free property with power-law degree distribution, Poisson degree distribution, and small-world property. Chrysin, wogonin, and oroxylin A exhibited as main active components with much higher degree values. Chemical carcinogenesis-receptor activation (hsa05207) was considered as critical pathway due to remarkable centrality indexes. Additionally, potential synergistic effect of wogonin and chrysin was observed on the conversion of supercoiled DNA to relaxed forms. These results improved current understanding of flavonoid-rich plants on the treatment of cancer. Moreover, the multi-disciplinary approach provided a new strategy for the research of natural products from medical plants.
Asunto(s)
Scutellaria baicalensis , Espectrometría de Masas en Tándem , Humanos , Scutellaria baicalensis/química , Espectrometría de Masas en Tándem/métodos , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa I/farmacología , Ultrafiltración , Células HeLa , Estructura Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/químicaRESUMEN
Inonotus hispidus mushroom is a traditional medicinal fungus with anti-cancer, antioxidation, and immunomodulatory activities, and it is used in folk medicine as a treatment for indigestion, cancer, diabetes, and gastric illnesses. Although I. hispidus is recognized as a rare edible medicinal macrofungi, its genomic sequence and biosynthesis potential of secondary metabolites have not been investigated. In this study, using Illumina NovaSeq combined with the PacBio platform, we sequenced and de novo assembled the whole genome of NPCB_001, a wild I. hispidus isolate from the Aksu area of Xinjiang Province, China. Comparative genomic and phylogenomic analyses reveal interspecific differences and evolutionary traits in the genus Inonotus. Bioinformatics analysis identified candidate genes associated with mating type, polysaccharide synthesis, carbohydrate-active enzymes, and secondary metabolite biosynthesis. Additionally, molecular networks of metabolites exhibit differences in chemical composition and content between fruiting bodies and mycelium, as well as association clusters of related compounds. The deciphering of the genome of I. hispidus will deepen the understanding of the biosynthesis of bioactive components, open the path for future biosynthesis research, and promote the application of Inonotus in the fields of drug research and functional food manufacturing.
RESUMEN
Laetiporus sulphureus mushroom is a complementary and alternative medicine that has anticancer, antioxidation, and analgesic effects and immunomodulatory activity; it is used as a treatment for cough and rheumatism and is a functional food that can improve physical fitness. Even though L. sulphureus has garnered considerable biotechnological and pharmacological interest due to its excellent cellulose-degrading ability and diverse biological activities, its biosynthetic potential regarding polysaccharides and secondary metabolites has not been thoroughly examined. In this study, we sequenced and assembled the whole genome of a wild L. sulphureus isolate, NWAFU-1, from the Qinling Mountains in China. Comparative genomes analysis revealed genomic differences between subspecies, and phylogenomic analysis revealed evolutionary divergence as well as genome expansion and contraction of individual Polyporaceae family species. Bioinformatics investigation identified candidate genes associated with mating type, polysaccharide synthesis, carbohydrate-active enzymes, and secondary-metabolite biosynthesis, which included multiple terpenoids, nonribosomal peptides, and polyketides. The locations of biosynthetic core genes were mapped and displayed on chromosomes and contigs. Totals of 143 proteins from 126 coding genes were identified and divided into 14 cytochrome P450 families. Furthermore, the biosynthetic network of tetracyclic triterpenoid active components was postulated by genome mining of related genes combined with the molecular network of metabolites. The genome analysis of L. sulphureus in this study improves the understanding of the biosynthesis of active compounds, which will lay a theoretical foundation for subsequent research on active-compound biosynthesis and promote the application of Laetiporus in the field of drug research and functional-food creation. IMPORTANCE L. sulphureus is a parasitic basidiomycete fungus that causes brown rot. The fruiting bodies of L. sulphureus are used as ancient medicines in China and Europe to cure cancer, analgesia, cough, and rheumatism and are considered a functional food that regulates the body and improves health. L. sulphureus was inferred to be a tetrapolar system based on a high-quality genome, which will aid molecular breeding and artificial farming. Screening polysaccharide synthesis candidate genes and comparing carbohydrate-associated genes in brown-rot basidiomycetes help understand their growth. Identifying core genes for secondary-metabolite biosynthesis, gene cluster family analysis, and comparative cluster analysis will guide heterologous-biosynthesis investigations of these genes and help elucidate the biosynthetic pathways for L. sulphureus bioactive natural components. The biosynthesis network of tetracyclic triterpenes was mapped using metabolite profiling and genome scanning. This work explores the biosynthetic capacity of L. sulphureus-derived natural products and lays the foundation for biosynthetic studies of them.
Asunto(s)
Agaricales , Basidiomycota , Productos Biológicos , Policétidos , Enfermedades Reumáticas , Triterpenos , Agaricales/genética , Agaricales/química , Agaricales/metabolismo , Tos/genética , Basidiomycota/genética , Terpenos/metabolismo , Genómica , Cromosomas/metabolismo , Carbohidratos , Enfermedades Reumáticas/genética , Celulosa , AnalgésicosRESUMEN
Phaeosphaeria fuckelii, an endophytic fungus associated with the herbal medicine Phlomis umbrosa, produced four new thiodiketopiperazine alkaloids, phaeosphaones A-D (1-4), featuring an unusual ß-(oxy)thiotryptophan motif, along with four known analogues, phaeosphaone E (5), chetoseminudin B (6), polanrazine B (7), and leptosin D (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and ECD calculations. Compounds 4, 6, and 8 were found to display mushroom tyrosinase inhibitory activity with IC50 values of 33.2 ± 0.2, 31.7 ± 0.2, and 28.4 ± 0.2 µM, respectively, more potent than that of the positive control, kojic acid (IC50 = 40.4 ± 0.1 µM). A molecular-docking study disclosed the π-π stacking interaction between the indole moiety of 8 and the His243 residue of tyrosinase.