Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 662: 171-182, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341940

RESUMEN

The physical property tuning of nanomaterials is of great importance in energy, medicine, environment, catalysis, and other fields. Topochemical synthesis of nanomaterials can achieve precise control of material properties. Here, we synthesized a kind of element-doped bismuth-based nanomaterial (BOS) by topochemical-like synthesis and used it for the phototherapy of tumors. In this study, we employed bismuth fluoride nanoflowers as a template and fabricated element-doped bismuth oxide nanoflowers by reduction conditions. The product is consistent with the precursor in crystal structure and nanomorphology, realizing topochemical-like synthesis under mild conditions. BOS can generate reactive oxygen species, consume glutathione, and perform photothermal conversion under 730 nm light irradiation. In vitro and in vivo studies demonstrate that BOS could suppress tumor growth by inducing apoptosis and ferroptosis through phototherapy. Therefore, this study offers a general regulation method for tuning the physical properties of nanomaterials by using a topochemical-like synthesis strategy.


Asunto(s)
Neoplasias de la Mama , Nanoestructuras , Neoplasias , Fotoquimioterapia , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Bismuto/química , Fototerapia/métodos , Neoplasias/tratamiento farmacológico , Nanoestructuras/química , Línea Celular Tumoral
2.
J Colloid Interface Sci ; 656: 320-331, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995402

RESUMEN

Ferroptosis-mediated tumor treatment is constrained by the absence of single-component, activatable multifunctional inducers. Given this, a topological synthesis strategy is employed to develop an efficient bismuth-based semiconductor nano-photocatalyst (Bi2O3:S) for tumor ferroptosis therapy. Photo-excited electrons can participate in the reduction reaction to produce harmful reactive oxygen species (ROS) when exposed to near-infrared light. Meanwhile, photo-excited holes can contribute to the oxidation reaction to utilize extra glutathione (GSH) in tumors. In the acidic tumor microenvironment, bismuth ions generated from Bi2O3:S may further cooperate with GSH to amplify oxidative stress damage and achieve biodegradation. Both promote ferroptosis by downregulating glutathione peroxidase 4 (GPX4) expression. Besides, sulfur doping optimizes its near-infrared light-induced photothermal conversion efficiency, benefiting its therapeutic effect. Thus, bismuth ions and holes synergistically drive photo-activable ferroptosis in this nanoplatform, opening up new avenues for tumor therapy.


Asunto(s)
Ferroptosis , Neoplasias , Fotoquimioterapia , Humanos , Bismuto , Glutatión , Especies Reactivas de Oxígeno , Iones , Neoplasias/terapia , Línea Celular Tumoral , Fototerapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA