Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611353

RESUMEN

AIMS: The study aimed to evaluate the effects of dietary folic acid (FA) on the production performance of laying hens, egg quality, and the nutritional differences between eggs fortified with FA and ordinary eggs. METHODS: A total of 288 26-week-old Hy-Line Brown laying hens (initial body weights 1.65 ± 0.10 kg) with a similar weight and genetic background were used. A completely randomized design divided the birds into a control group and three treatment groups. Each group consisted of six replicates, with twelve chickens per replicate. Initially, all birds were fed a basal diet for 1 week. Subsequently, they were fed a basal diet supplemented with 0, 5, 10, or 15 mg/kg FA in a premix for a duration of 6 weeks. RESULTS: Supplementation of FA could significantly (p < 0.05) enhance the FA content in egg yolks, particularly when 10 mg/kg was used, as it had the most effective enrichment effect. Compared to the control group, the Glu content in the 10 and 15 mg/kg FA groups showed a significant (p < 0.05) decrease. Additionally, the contents of Asp, Ile, Tyr, Phe, Cys, and Met in the 15 mg/kg FA group were significantly (p < 0.05) lower compared to the other groups. Adding FA did not have significant effects on the levels of vitamin A and vitamin E in egg yolk, but the vitamin D content in the 5 and 10 mg/kg FA groups showed a significant (p < 0.05) increase. Furthermore, the addition of FA did not have a significant effect on the levels of Cu, Fe, Mn, Se, and Zn in egg yolk. The dietary FA did not have a significant effect on the total saturated fatty acids (SFA) and polyunsaturated fatty acid (PUFA) content in egg yolk. However, the total monounsaturated fatty acid (MUFA) content in the 5 and 10 mg/kg groups significantly (p < 0.05) increased. These changes in nutritional content might be attributed to the increased very low-density lipoprotein (VLDL) protein content. The significant decrease in solute carrier family 1 Member 1 (SLC1A1), solute carrier family 1 Member 2 (SLC1A2), and solute carrier family 1 Member 3 (SLC1A3) gene expression compared to the control group appeared to be the reason for the decrease in amino acid content in egg yolk within the dietary FA group. CONCLUSION: The findings suggest that the appropriate addition of FA can enhance the levels of MUFA and vitamin D in egg yolks, thereby improving their nutritional value. Excessive intake of FA can decrease the effectiveness of enriching FA in egg yolk and impact the enrichment of certain amino acids. The yolk of eggs produced by adding 10 mg/kg of FA to the feed contains the optimal amount of nutrients. This study informs consumers purchasing FA-fortified eggs.

2.
Theriogenology ; 209: 170-177, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393747

RESUMEN

As a functional fatty acid, α-linolenic acid (ALA) is essential in promoting animal testosterone biosynthesis. This study investigated the effects of ALA on testosterone biosynthesis and the possible mechanism underlying the signaling pathway in primary Leydig cells of the rooster. METHODS: Primary rooster Leydig cells were treated with ALA (0, 20, 40, or 80 µmol/L) or pretreated with a p38 inhibitor (50 µmol/L), a c-Jun NH2-terminal kinase (JNK) inhibitor (20 µmol/L), or an extracellular signal-regulated kinase (ERK) inhibitor (20 µmol/L) before ALA treatment. Testosterone content in the conditioned culture medium was detected using an enzyme-linked immunosorbent assay (ELISA). The expression of steroidogenic enzymes and JNK-SF-1 signaling pathway factors was detected using real-time fluorescence quantitative PCR (qRT-PCR). RESULTS: Supplementation with ALA significantly increased testosterone secretion within culture media (P < 0.05), and the optimized dose was 40 µmol/L. Compared with the control group, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA expression significantly increased (P < 0.05) in the 40 µmol/L ALA group; 17-hydroxylase/c17-20 lyase (P450c17) and p38 mRNA expressions were not significantly different in the 40 µmol/L ALA group; ERK and JNK mRNA expressions were significantly upregulated (P < 0.05) in 40 µmol/L ALA group. In the inhibitor group, testosterone levels were significantly downregulated (P < 0.05). Compared with the 40 µmol/L ALA group, StAR, P450scc, and P450c17 mRNA expressions were significantly decreased (P < 0.05), and 3ß-HSD mRNA expression in the p38 inhibitor group did not change; StAR, P450scc, and 3ß-HSD mRNA expressions were significantly decreased (P < 0.05), and P450c17 mRNA expression in ERK inhibitor group did not change; StAR, P450scc, 3ß-HSD, and P450c17 mRNA expressions were significantly decreased (P < 0.05) in JNK inhibitor group. Additionally, the increased steroidogenic factor 1 (SF-1) gene expression levels induced by ALA were reversed when the cells were pre-incubated with JNK and ERK inhibitors. The levels in the JNK inhibitor group were significantly lower than those in the control group (P < 0.05). CONCLUSION: ALA may promote testosterone biosynthesis by activating the JNK-SF-1 signaling pathway to upregulate StAR, P450scc, 3ß-HSD, and P450c17 expression in primary rooster Leydig cells.


Asunto(s)
Células Intersticiales del Testículo , Ácido alfa-Linolénico , Masculino , Animales , Células Intersticiales del Testículo/metabolismo , Factor Esteroidogénico 1/metabolismo , Factor Esteroidogénico 1/farmacología , Ácido alfa-Linolénico/farmacología , Pollos/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , ARN Mensajero/metabolismo , Testosterona/metabolismo , Transducción de Señal , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo
3.
Front Physiol ; 14: 1110301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744028

RESUMEN

Aims: The study aimed to evaluate the effects of pretreated Chinese herbal medicine (PCHM) on egg quality, production performance, histopathological changes in the uterus, antiox idant capacity, and antioxidant gene expression in late-phase layers. Methods: Jinghong No.1 layers (n = 360, 68 weeks old) were assigned randomly to one of f our dietary interventions. Each treatment was replicated six times. Repeat 15 chickens per g roup. All birds were fed a diet composed of a corn-soybean meal-based diet supplemented with 0, 0.2, 0.4, or 0.8% PCHM for 6 weeks. Results: Dietary PCHM supplementation had no significant effects on laying rate, feed con sumption, yolk color, and shape index. With increasing PCHM level the Haugh unit linearly increased (P < 0.05). Supplementation of 0.8% PCHM increased egg weight, compared with the control (P < 0.05). PCHM can effectively alleviated the pathological changes caused by aging in the uterus including hemorrhage, and many inflammatory cell infiltrations. Supplementation of 0.4% PCHM increased glutathione peroxidase (GSHPx) in liver, magnum, and plasm considerably, compared with the control (P < 0.05). Supplementation of PCHM decr ease in the liver, magnum, and uterus on malondialdehyde (MDA) content, compared with the control (P < 0.05). Compared with the control group, mRNA expressions of glutathione peroxidase 1 (GPX1), peroxidase 4 (GPX4), catalase (CAT), and nuclear factor E2-related factor 2 (Nrf2) in the magnum, liver, and uterus were dramatically rose in the 0.4% PCHM supplementation group (P < 0.05). In summary, dietary supplementation after PCHM increased egg weight and quality in late-phase laying hens. Conclusion: Dietary PCHM increased the antioxidative capacity of late-phase laying hens, which could be associated with increased mRNA expression of antioxidant enzymes and Nrf2. These findings provide potential for using PCHM to increase the production performance in late-phase laying hens.

4.
Poult Sci ; 101(11): 102113, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087443

RESUMEN

This study's objective was to investigate the effects of dietary Se (in the form of selenomethionine) on the antioxidant activity and selenoprotein gene expressions in layer breeder roosters. One hundred and eighty, 36-wk-old Jingfen layer breeder roosters were randomly allocated to one of 5 dietary treatments (0, 0.25, 0.5, 1, or 2 mg/kg Se) for 6 wk on a corn-soybean meal-based diet. Antioxidant parameters and selenoprotein gene expressions were assessed at the end of the experiment. The results showed that Se supplementation significantly increased the activity of T-SOD, CAT, GSH-Px, and superoxide anion scavenging ability in plasma (P ≤ 0.05), and activities of T-SOD, CAT, GSH-Px, superoxide anion scavenging ability, and hydroxyl radical scavenging ability in the liver, kidney, and testis (P < 0.05). Moreover, MDA levels were significantly reduced in plasma, liver, kidney, and testis (P < 0.01), compared to the control group. Furthermore, the dietary administration of Se significantly increased TrxR2 and GPx4 mRNA levels in kidney and testis, and ID1 mRNA levels in liver and kidney. Most of the antioxidant parameters and selenoprotein-related gene expressions significantly increased, and MDA significantly decreased at dietary supplementation with 0.5 mg/kg Se. Whereas a higher dose of Se level (1 or 2 mg/kg) inhibited the activities of some of the antioxidant enzymes and selenoprotein-related gene expressions in selected tissues. In conclusion, dietary Se supplementation with 0.5 mg/kg significantly improved roosters' antioxidant status and selenoprotein-related gene expression in liver, kidney, and testis, while higher doses led to inhibit these; dietary Se might increase reproductive performance by enhancing their antioxidant status in roosters.


Asunto(s)
Selenio , Selenometionina , Animales , Masculino , Selenometionina/metabolismo , Antioxidantes/metabolismo , Pollos/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Superóxidos/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Dieta/veterinaria , ARN Mensajero/metabolismo , Expresión Génica , Superóxido Dismutasa/metabolismo , Selenio/metabolismo
5.
Poult Sci ; 97(12): 4415-4424, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085275

RESUMEN

The objective of this study consisting of 2 trials was to investigate the antioxidant role of conjugated linoleic acid (CLA) isomers (c9, t11-CLA and t10, c12-CLA) and the underlying mechanism by which they act in modulating redox status in a primary laying hen hepatocyte culture. In trial 1, the cytotoxicity of CLA isomers or linoleic acid (LA) (0, 25, 50, 100, 200, 400, 800 µmol/L) was evaluated by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay. The concentration of CLA isomers or LA (25, 50, 100 µmol/L) for proper antioxidant activity was evaluated by measuring the antioxidant enzyme activity. In trial 2, there were 5 groups: control group, cells were untreated; H2O2 group, cells were exposed to 4 mmol/L H2O2 for 2 h; c9, t11 or t10, c12 or LA group, cells were treated with c9, t11-CLA or t10, c12-CLA or LA for 24 h and then exposed to 4 mmol/L H2O2 for 2 h. Trial 1 showed that the non-toxic dose range for CLA isomers was 0 to 200 µmol/L. The optimum concentration of c9, t11-CLA and t10, c12-CLA for trial 2 was 100 µmol/L. In trial 2, pretreatment with t10, c12-CLA but not c9, t11-CLA attenuated the increase in reactive oxygen species (ROS) compared to hydrogen peroxide (H2O2) group (P < 0.05). t10, c12-CLA elevated the superoxide dismutase (SOD) and catalase (CAT) activities compared with the H2O2 group (P < 0.05). In addition, t10, c12-CLA up-regulated the mRNA expression of nuclear factor E2-related factor-2 (Nrf2) as well as its target genes, Cu-Zn superoxide dismutase (SOD1) and CAT (P < 0.05). Pretreatment with t10, c12-CLA but not c9, t11-CLA decreased Nrf2 protein expression in the cytoplasm and increased Nrf2 protein expression in the nucleus compared with the H2O2 group (P < 0.05). The results indicate that t10, c12-CLA exhibits a stronger antioxidant capacity than c9, t11-CLA in primary cultured laying hen hepatocytes. t10, c12-CLA increases the activity and mRNA expression of antioxidant enzymes via facilitating nuclear translocation of Nrf2.


Asunto(s)
Antioxidantes/metabolismo , Pollos/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Alimentación Animal/análisis , Animales , Células Cultivadas , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Femenino , Hepatocitos/metabolismo , Ácido Linoleico/administración & dosificación , Ácidos Linoleicos Conjugados/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA