Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 130822, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521337

RESUMEN

Ulcerative colitis (UC) is regarded as a recurring inflammatory disorder of the gastrointestinal tract, for which treatment approaches remain notably limited. In this study, we demonstrated that ginseng polysaccharides (GPs) could alleviate the development of dextran sulfate sodium (DSS)-induced UC as reflected by the ameliorated pathological lesions in the colon. GPs strikingly suppressed the expression levels of multiple inflammatory cytokines, as well as significantly inhibited the infiltration of inflammatory cells. Microbiota-dependent investigations by virtue of 16S rRNA gene sequencing, antibiotic treatment and fecal microbiota transplantation illustrated that GPs treatment prominently restored intestinal microbial balance predominantly through modulating the relative abundance of Lactobacillus. Additionally, GPs remarkably influenced the levels of microbial tryptophan metabolites, diminished the intestinal permeability and strengthened intestinal barrier integrity via inhibiting the 5-HT/HTR3A signaling pathway. Taken together, the promising therapeutic potential of GPs on the development of UC predominantly hinges on the capacity to suppress the expression of inflammatory cytokines as well as to influence Lactobacillus and microbial tryptophan metabolites.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Panax , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Triptófano , ARN Ribosómico 16S , Citocinas , Sulfato de Dextran , Modelos Animales de Enfermedad , Colon , Ratones Endogámicos C57BL
2.
Cancer Res Treat ; 56(1): 134-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37591782

RESUMEN

PURPOSE: Tamoxifen showed individual differences in efficacy under different CYP2D6*10 genotypes. Our study evaluated the prognosis of tamoxifen or toremifene in hormone receptor (HR)-positive breast cancer patients under different genotypes. MATERIALS AND METHODS: CYP2D6*10 genotypes of HR-positive breast cancer patients were determined by Sanger sequencing, and all the patients were divided into tamoxifen group or toremifene group. RESULTS: A total of 268 patients with HR-positive breast cancer were studied. The median follow-up time was 72.0 months (range, 5.0 to 88.0 months). Of these, 88 (32.9%), 114 (42.5%), and 66 (24.6%) patients had C/C, C/T, and T/T genotypes, respectively. Among patients who received tamoxifen (n=176), the 5-year disease-free survival (DFS) rate in patients with C/C and C/T genotype was better than that in patients with T/T genotype, and the difference was statistically significant (p < 0.001 and p=0.030, respectively). In patients receiving toremifene, CYP2D6*10 genotype was not significantly associated with DFS (p=0.325). Regardless of genotypes, the 5-year DFS rate was higher in patients treated with toremifene than in patients with tamoxifen (91.3% vs. 80.0%, p=0.011). Compared with tamoxifen, toremifene remained an independent prognostic marker of DFS in multivariate analysis (hazard ratio, 0.422; p=0.021). For all the 180 patients with CYP2D6*10 C/T and T/T genotypes, the 5-year DFS rate was significantly higher in the toremifene group than in the tamoxifen group (90.8% vs. 70.1%, p=0.003). CONCLUSION: Toremifene may be an alternative adjuvant endocrine therapy for patients with CYP2D6*10 mutant genotypes.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/uso terapéutico , Toremifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Quimioterapia Adyuvante , Genotipo
3.
Phytomedicine ; 123: 155180, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043385

RESUMEN

BACKGROUND: One critical component of the immune system that prevents breast cancer cells from forming distant metastasis is natural killer (NK) cells participating in immune responses to tumors. Ginsenoside Rh2 (GRh2) as one of the major active ingredients of ginseng has been employed in treatment of cancers, but the function of GRh2 in modulating the development of breast cancer remains elusive. PURPOSE: This study was to dissect the effect of GRh2 against breast cancer and its potential mechanisms associated with NK cells, both in vitro and in vivo. METHODS: MDA-MB-231 and 4T1 cells were used to establish in situ and hematogenous mouse models. MDA-MB-231 and MCF-7 were respectively co-cultured with NK92MI cells or primary NK cells in vitro. Anti-tumor efficacy of GRh2 was verified by immunohistochemistry (IHC), Cell Counting Kit-8 (CCK8), high resolution micro-computed tomography (micro-CT) scanning of lungs and hematoxylin and eosin (H&E) staining. Lactate dehydrogenase (LDH) cytotoxicity assay, flow cytometry, in vivo depletion of NK cells, enzyme-linked immunosorbent assay (ELISA), western blot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence and cell transfection were performed for investigating the anti-tumor mechanisms of GRh2. Molecular docking, microscale thermophoresis (MST) and cellular thermal shift assay (CETSA) were employed to determine the binding between endoplasmic reticulum protein 5 (ERp5) and GRh2. RESULTS: We demonstrated that GRh2 exerted prominent impacts on retarding the growth and metastasis of breast cancer through boosting the cytotoxic function of NK cells, as validated by the elevated release of perforin, granzyme B and interferon-γ (IFN-γ). Mechanistical studies revealed that GRh2 was capable of diminishing the expression of ERp5 and GRh2 directly bound to ERp5 in MDA-MB-231 cells as well as on a recombinant protein level. GRh2 prevented the formation of soluble MICA (sMICA) and upregulated the expression level of MICA in vivo and in vitro. Importantly, the reduced lung metastasis of breast cancer by GRh2 was almost abolished upon the depletion of NK cells. Moreover, GRh2 was able to insert into the binding pocket of ERp5 directly. CONCLUSION: We firstly demonstrated that GRh2 played a pivotal role in augmenting NK cell activity by virtue of modulating the NKG2D-MICA signaling axis via directly binding to ERp5, and may be further optimized to a therapeutic agent for the treatment of breast cancer.


Asunto(s)
Ginsenósidos , Células Asesinas Naturales , Neoplasias , Animales , Ratones , Simulación del Acoplamiento Molecular , Microtomografía por Rayos X , Neoplasias/tratamiento farmacológico
4.
Phytother Res ; 37(11): 4999-5016, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491826

RESUMEN

Numerous pharmacological effects of quercetin have been illustrated, including antiinflammation, antioxidation, and anticancer properties. In recent years, the antioxidant activity of quercetin has been extensively reported, in particular, its impacts on glutathione, enzyme activity, signaling transduction pathways, and reactive oxygen species (ROS). Quercetin has also been demonstrated to exert a striking antiinflammatory effect mainly by inhibiting the production of cytokines, reducing the expression of cyclooxygenase and lipoxygenase, and preserving the integrity of mast cells. By regulating oxidative stress and inflammation, which are regarded as two critical processes involved in the defense and regular physiological operation of biological systems, quercetin has been validated to be effective in treating a variety of disorders. Symptoms of these reactions have been linked to degenerative processes and metabolic disorders, including metabolic syndrome, cardiovascular, neurodegeneration, cancer, and nonalcoholic fatty liver disease. Despite that evidence demonstrates that antioxidants are employed to prevent excessive oxidative and inflammatory processes, there are still concerns regarding the expense, accessibility, and side effects of agents. Notably, natural products, especially those derived from plants, are widely accessible, affordable, and generally safe. In this review, the antioxidant and antiinflammatory abilities of the active ingredient quercetin and its application in oxidative stress-related disorders have been outlined in detail.


Asunto(s)
Estrés Oxidativo , Quercetina , Humanos , Quercetina/farmacología , Quercetina/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología
5.
J Ethnopharmacol ; 316: 116735, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37286115

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the notion of traditional Chinese medicine, the theory of invigorating the circulation of blood is a prominent treatment for cancer in clinic. Therefore, Salvia miltiorrhiza Bunge, as a representative of Chinese medicine of invigorating the circulation of blood, has been proved to be an effective medicinal herb for treating cancer. AIM OF THE STUDY: To clarify the anti-cancer effect of Salvia miltiorrhiza Bunge aqueous extract (SMAE) on colorectal cancer (CRC) and investigate whether the therapeutic effect of SMAE was mediated by attenuating the infiltration of tumor-associated macrophages (TAMs) into the tumor microenvironment (TME). MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used for determined the main compounds of SMAE. MC38 cells were subcutaneously injected into the mice to establish the mouse model of CRC. Tumor growth curve was detected by tumor volume measurement. The model group received distilled water irrigation once a day. SMAE-treated group received 5 g/kg or 10 g/kg SMAE once a day. Anti-PD-L1 treated group received 5 mg/kg anti-PD-L1 once every three days. Protein expression of Cox2 and PD-L1 was determined by Western blot assay. The secretion levels of PGE2, IL-1ß, IL-6, MCP-1, and GM-CSF were evaluated through ELISA. The mRNA expression of CSF1, CCL2, CXCL1, CXCL2, and CXCL3 was measured by using RT-qPCR. Staining of Ki67, TUNEL and Caspase3 was used to investigate cell proliferation and apoptosis. Immunohistochemical staining was used to determine CD8+ T cell distribution. H&E staining was used to confirm histopathological changes. The expressions of F4/80 and CD68 were measured by flow cytometry to identify macrophages in tumors and lymph nodes. The number of CD8+ T cells and the expression of PD-1, IFN-γ, and Granzyme B (GZMB) were determined by flow cytometry. RESULTS: SMAE significantly retarded the growth of MC38 mouse colorectal cancer. SMAE strikingly inhibited the expression of Cox2 and impaired the secretion of PGE2 in tumors, contributing to the attenuated intra-tumoral infiltration of TAMs via Cox2/PGE2 cascade. Meanwhile, SMAE augmented anti-tumor immunity by the elevated proportion of IFN-γ+ CD8+ T cells and GZMB+ CD8+ T cells, which decreased the tumor load. Furthermore, the combination of SMAE and anti-PD-L1 showed a higher therapeutic efficacy than either monotherapy in controlling tumor growth in MC38 xenograft model. CONCLUSIONS: SMAE attenuated the infiltration of TAMs into tumors and synergized with anti-PD-L1 to treat CRC via modulating Cox2/PGE2 cascade.


Asunto(s)
Neoplasias Colorrectales , Salvia miltiorrhiza , Salvia , Ratones , Humanos , Animales , Macrófagos Asociados a Tumores , Dinoprostona , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Neoplasias Colorrectales/tratamiento farmacológico , Inmunoterapia , Agua , Microambiente Tumoral , Línea Celular Tumoral
6.
ACS Nano ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36623255

RESUMEN

Responsive nanosystems for tumor treatment with high specificity and sensitivity have aroused great attention. Herein, we develop a tumor microenvironment responsive and near-infrared (NIR)-activatable theranostic nanoreactor for imaging-guided anticancer therapy. The nanoreactor (SnO2-x@AGP) is comprised of poly(vinylpyrrolidine) encapsulated hollow mesoporous black SnO2-x nanoparticles coloaded with glucose oxidase (GOx) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The constructed nanoreactor can be specifically activated through endogenous H2O2 by an NIR-mediated "bursting-like" process to enhance its imaging and therapeutic functions. Black SnO2-x with abundant oxygen vacancies expedites effective separation of electron-hole pairs from energy-band structure and endows them with strong hyperthermia effect upon NIR laser irradiation. The generating toxic H2O2 with the assistance of GOx provides SnO2-x@AGP with the capacity of oxidative stress therapy. Ascended H2O2 can activate ABTS into ABTS•+. ABTS•+ not only possesses significant NIR absorption properties, but also disrupts intracellular glutathione to generate excessive reactive oxygen species for improved phototherapy, leading to more effective treatment together with oxidative stress therapy. Thus, SnO2-x@AGP with NIR-mediated and H2O2-activated performance presents tumor inhibition efficacy with minimized damage to normal tissues. These outstanding characteristics of SnO2-x@AGP bring an insight into the development of activatable nanoreactors for smart, precise, and non-invasive cancer theranostics.

7.
Biomed Pharmacother ; 156: 113897, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36308918

RESUMEN

Breast cancer is the most commonly diagnosed cancer in the world, and metastasis is often the main cause of death in breast cancer patients. Salvia miltiorrhiza -Ginseng (SG) herb pair is clinically used for the treatment of cardiovascular diseases and cancers. However, the pharmacological action of this pair on breast cancer is yet unclear. In this study, a spontaneous metastasis model of breast cancer was constructed to assess the therapeutic value of SG. After administration of different doses of SG, the results showed that although it did not significantly inhibit tumor growth, high-dose SG administration could inhibit tumor metastasis. Then, based on systematic pharmacology combined with Gene Expression Omnibus (GEO) database, potential targets of drugs were identified such as vascular endothelial growth factor A (VEGFA), matrix metalloproteinase (MMP9), prostaglandin endoperoxide synthase2 (PTGS2), etc. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis revealed that these targets were related to cytokine-mediated signaling pathway, cell migration and other biological processes and signaling pathways such as PI3K/Akt, etc. The systematic pharmacology analysis showed that SG effectively inhibited the VEGFA and MMP9-mediated biological events such as angiogenesis, epithelial-mesenchymal transition (EMT) and impaired tumor metastasis. Overall, our research aimed to provide new ideas for the treatment of breast cancer lung metastasis in traditional Chinese medicine.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Medicamentos Herbarios Chinos , Panax , Salvia miltiorrhiza , Humanos , Femenino , Salvia miltiorrhiza/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factor A de Crecimiento Endotelial Vascular/genética , Panax/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antineoplásicos/farmacología , Medicina Tradicional China , China
8.
Curr Microbiol ; 79(11): 351, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209271

RESUMEN

Petroleum contamination may lead to variations in soil microbial community structure and activities. The bioremediation of petroleum-contaminated soil typically depends on the characteristics and activities of oil-degrading microorganisms, which can be introduced or be part of the native soil microbiota. Thus, analyzing the structure of the microbial community and internal relationships in the bioremediation process is critical. Our study characterized the physical and chemical properties, microbial community structure, and microbial diversity of surface soil collected near an oilfield. The total carbon (TC), total organic carbon (TOC), and microbial diversity in oil-contaminated soil was found higher than in uncontaminated samples. Proteobacteria abundance was inhibited with oil pollution, while Actinomycetes abundance was enhanced. Some indigenous hydrocarbon-degrading bactera were enriched by oil pollution, such as Bacillus, Actinomarinales norank, Balneolaceae uncultured, Marinobacter, and Pseudomonas. Furthermore, Rokubacteria, Nitrospirae, and Entotheonellaeota were significant differences in the contaminated group. There were 16 genera with significant differences in the polluted group, such as Woeseia, Pelagibius, Pontibacillus, IS_44, Aliifodinibius, while Halothiobacillus, Algoriphagus, Novosphingobium, etc. had significant differences in the uncontaminated group. Redundancy analysis demonstrated that the responses of the microorganisms to the evaluated environmental factors were different, and TC was the most important driver of microbial community variation. Moreover, TOC was the largest contributor to operational taxonomic unit (OTU) and Chao index variations. Our results provide a theoretical basis for the enhancement of microbial activity in oil-contaminated soil, which might improve bioremediation efficacy.


Asunto(s)
Petróleo , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Carbono/análisis , Hidrocarburos , Petróleo/análisis , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
9.
J Control Release ; 350: 841-856, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096366

RESUMEN

Melanoma is a malignant skin cancer that is prone to metastasis in the early stage and has a poor prognosis. Immunomodulatory therapy for melanoma has been a hot research topic in recent years. However, low immune cell infiltration and loss of tumor immunogenicity may occur in tumors, resulting in low response rates to immunotherapy. Thus, immunomodulatory therapy is usually used in combination with chemotherapy and radiotherapy. Development of combined therapeutic strategies with low systemic toxicity, high immune responsiveness and long-term inhibition of metastasis and recurrence of melanoma is the goal of current research. In this study, the insoluble immune adjuvant imiquimod (R837) was prepared as nanocrystals and coated with polydopamine (PDA) to form R837@PDA, which was then loaded into chitosan hydrogel (CGP) to form the drug-loaded gel system, R837@PDA@CGP (RPC), to combine immunomodulation effects, induction of immunogenic cell death (ICD) effects and immune-enhancement effects. After treatment with RPC, ICD in melanoma was induced, and the infiltration rate of cytotoxic T cells (CTLs) in melanoma was also significantly enhanced, which turned the tumor itself into an in situ vaccine and boosted the cancer-immunity cycle at the tumor site. Therefore, melanoma growth, metastasis and recurrence were notably inhibited.


Asunto(s)
Quitosano , Hipertermia Inducida , Melanoma , Nanopartículas , Línea Celular Tumoral , Humanos , Hidrogeles , Imiquimod/química , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Melanoma/secundario , Nanopartículas/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-35761898

RESUMEN

Idiopathic oligoasthenozoospermia (iOAZS) is one of the major causes of male infertility, and the ideal therapies for iOAZS have not been established yet. Traditional Chinese medicine (TCM), including Xianlu oral solution (XL), has been widely used as an adjunct treatment for male infertility in the clinic. However, the underlying mechanisms of XL treatment on iOAZS are still not known. Here, we found that XL treatment has therapeutic effects on ornidazole (ORN)-induced OAZS model rats through the amelioration of testis tissues spermatogenesis and the improvement of sperm concentration and motility. Moreover, XL treatment ameliorated the serum hormone levels, mitochondrial membrane potential, apoptosis status, and oxidative stress status in the testis tissues of iOAZS model rats. These findings identify a potential mechanism underlying the therapeutic effects of Xianlu oral solution on iOAZS, and Xianlu oral solution may be used as a traditional Chinese medicine (TCM) therapy for male infertility caused by iOAZS in clinical practice.

11.
Front Immunol ; 13: 874878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634319

RESUMEN

Background: The gut-liver axis plays a crucial role in various liver diseases. Therefore, targeting this crosstalk may provide a new treatment strategy for liver diseases. However, the exact mechanism underlying this crosstalk and its impact on drug-induced liver injury (DILI) requires clarification. Aim: This study aimed to investigate the potential mechanism and therapeutic effect of MgIG on MTX-induced liver injury, which is associated with the gut-liver axis and gut microbiota. Methods: An MTX-induced liver injury model was generated after 20-mg/kg/3d MTX application for 30 days. Meanwhile, the treatment group was treated with 40-mg/kg MgIG daily. Histological examination, aminotransferase, and aspartate aminotransferase enzyme levels were estimated to evaluate liver function. Immune cells infiltration and inflammatory cytokines were detected to indicate inflammation levels. Colon histological score, intestinal barrier leakage, and expression of tight junctions were employed to assess the intestinal injury. Bacterial translocation was observed using fluorescent in situ hybridisation, colony-forming unit counting, and lipopolysaccharide detection. Alterations in gut microbial composition were analysed using 16s rDNA sequencing and relative quantitative polymerase chain reaction. Short-chain-fatty-acids and lactic acid concentrations were then utilized to validate changes in metabolites of specific bacteria. Lactobacillus sp. supplement and fecal microbiota transplantation were used to evaluate gut microbiota contribution. Results: MTX-induced intestinal and liver injuries were significantly alleviated using MgIG treatment. Bacterial translocation resulting from the intestinal barrier disruption was considered a crucial cause of MTX-induced liver injury and the therapeutic target of MgIG. Moreover, MgIG was speculated to have changed the gut microbial composition by up-regulating probiotic Lactobacillus and down-regulating Muribaculaceae, thereby remodelling the intestinal barrier and inhibiting bacterial translocation. Conclusion: The MTX-induced intestinal barrier was protected owing to MgIG administration, which reshaped the gut microbial composition and inhibited bacterial translocation into the liver, thus attenuating MTX-related DILI.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Hepatopatías , Humanos , Hepatopatías/microbiología , Metotrexato/efectos adversos , Saponinas , Triterpenos
12.
Macromol Biosci ; 22(3): e2100429, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34910842

RESUMEN

As a stand-alone therapy strategy may not be sufficient for effective cancer treatment and a combination of chemotherapy with other therapies is a main trend in cancer treatment. A combination of chemotherapy and photothermal therapy (PTT) is reported here to achieve the goal of cascade multistage cancer treatment. A thermally responsive amphiphilic copolymer is designed and then a CuS nanoparticles (NPs)-based carbon monoxide (CO) photoinduced release system and doxorubicin (Dox) are encapsulated to construct the nanomedicine. The large-sized nanomedicine can accumulate in tumors after long circulation in vivo and will generate heat to act as a photothermal therapeutic agent by near infrared (NIR) light. Moreover, synergically release of CO and Dox is achieved and acted as a sensitized chemotherapeutic agent. The combination of PTT and chemotherapy sensitization can effectively eliminate active tumor cells in the periphery of the tumor. CuS NPs are also released after the degradation of nanomedicine and small-sized CuS NPs possess better tumor penetration and achieve penetration-enhanced PTT by further NIR irradiation, thereby effectively eliminating tumor cells inside solid tumors. Hence, cascade multistage cancer treatment of "combined PTT and chemotherapy sensitization"-"penetration-enhanced PTT" is achieved, and tumor cells are comprehensively and effectively eliminated.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fototerapia , Terapia Fototérmica , Polímeros/uso terapéutico
13.
Artículo en Inglés | MEDLINE | ID: mdl-34886340

RESUMEN

By adopting the concept of 'factory assembly followed by onsite installation,' construction industrialisation (CI) plays an increasingly important role in sustainable urban development. CI can enhance construction quality and efficiency while reducing environmental impacts. To promote the CI, several policy interventions have been developed and implemented in different countries and regions. This study reviews the global CI promoting regulations and policies to provide a comprehensive insight into its interrelationship and development tendency. The research selects 105 publications related to practical CI policy from widely utilised databases (i.e., Web of Science and Scopus). Based on the annual publication trend analysis, geospatial distribution, and citation analysis, seven interrelated critical CI policy formulation themes are identified and examined: regulatory policies, standardised policies, promotional policies, urban design and planning policies, technological policies, managerial and educational policies, and sustainability policies. In addition, internal correlations and mutual influence among these seven classified policies are explored and discussed, which helps scholars enhance their grasp of current CI policy research and guide future research. This review provides the research community and industrial practitioners with a comprehensive understanding of various CI-promoting policies and a roadmap to CI-promoting policy development and evaluation.


Asunto(s)
Desarrollo Industrial , Políticas , Desarrollo Sostenible
14.
Oxid Med Cell Longev ; 2021: 7037786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804370

RESUMEN

Pathological angiogenesis, as exhibited by aberrant vascular structure and function, has been well deemed to be a hallmark of cancer and various ischemic diseases. Therefore, strategies to normalize vasculature are of potential therapeutic interest in these diseases. Recently, identifying bioactive compounds from medicinal plant extracts to reverse abnormal vasculature has been gaining increasing attention. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza, has been shown to play significant roles in improving blood circulation and delaying tumor progression. However, the underlying mechanisms responsible for the therapeutic effects of Tan IIA are not fully understood. Herein, we established animal models of HT-29 human colon cancer xenograft and hind limb ischemia to investigate the role of Tan IIA in regulating abnormal vasculature. Interestingly, our results demonstrated that Tan IIA could significantly promote the blood flow, alleviate the hypoxia, improve the muscle quality, and ameliorate the pathological damage after ischemic insult. Meanwhile, we also revealed that Tan IIA promoted the integrity of vascular structure, reduced vascular leakage, and attenuated the hypoxia in HT-29 tumors. Moreover, the circulating angiopoietin 2 (Ang2), which is extremely high in these two pathological states, was substantially depleted in the presence of Tan IIA. Also, the activation of Tie2 was potentiated by Tan IIA, resulting in decreased vascular permeability and elevated vascular integrity. Mechanistically, we uncovered that Tan IIA maintained vascular stability by targeting the Ang2-Tie2-AKT-MLCK cascade. Collectively, our data suggest that Tan IIA normalizes vessels in tumors and ischemic injury via regulating the Ang2/Tie2 signaling pathway.


Asunto(s)
Abietanos/farmacología , Neoplasias del Colon/irrigación sanguínea , Regulación de la Expresión Génica/efectos de los fármacos , Isquemia/tratamiento farmacológico , Neovascularización Patológica/prevención & control , Receptor TIE-2/antagonistas & inhibidores , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Humanos , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Biomed Pharmacother ; 141: 111806, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34246190

RESUMEN

Diabetic nephropathy (DN) is a common disease, and patients often do not have satisfactory treatments. We investigated therapeutic effects of Fuxin Granules(FX) on DN and potential molecular mechanisms. We orally administered doses of FX to db/db mice for 10 weeks and measured total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol. H&E, PAS, Masson, and Oil Red O staining were used to observe the structure of kidneys and calculate indices of kidney function. We used pharmacological analysis to investigate potential mechanisms of FX. Relative mRNA and protein levels in the TGF-ß1/Smad, TGF-ß1/Smad, and VEGF/VEGFR2 pathways were examined. TC, TG, and LDL-C were markedly reduced, lipid accumulation was low, fibrosis reduced, kidney atrophy improved, kidney lipid droplet number significantly reduced, and glomerular filtration function improved by FX treatment. Multi-channel therapeutic effects in DN through the TGF-ß1/Smad and VEGF/VEGFR2 signaling pathways occurred, and FX substantially reduced expression of TGF-ß1 in the glomeruli. FX significantly inhibited TGF-ß1, Smad2/3 total protein levels, Smad2/3 phosphorylation mRNA levels of TGF-ß1, Smad2, and Smad3. eNOS, VEGFA, and VEGFR2 expression was regulated, levels of VEGFA and VEGFR2 were decreased, and FX increased eNOS. FX ameliorated symptoms of DN, resulting in marked improvement in hyperglycemia and hyperlipidemia and optimized structure and function of kidneys in db/db mice. FX efficacy was associated with the TGF-ß1/Smad and VEGF/VEGFR2 signaling pathways. We verified this potential mechanism and hope that this study will provide benefits for the clinical treatment of DN.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Farmacología en Red/métodos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Smad/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
16.
Front Pharmacol ; 12: 650425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122073

RESUMEN

Inflammasomes are large multimolecular complexes best recognized because of their ability to control activation of caspase-1, which in turn regulates the maturation of interleukin-18 (IL-18) and interleukin-1 ß (IL-1ß). IL-1ß was originally identified as a pro-inflammatory cytokine, capable of inducing local and systemic inflammation as well as a fever response reaction in response to infection or injury. Excessive production of IL-1ß is related to inflammatory and autoimmune diseases. Both coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS) are characterized by excessive inflammatory response. For SARS, there is no correlation between viral load and worsening symptoms. However, there is no specific medicine which is available to treat the disease. As an important part of medical practice, TCM showed an obvious therapeutic effect in SARS-CoV-infected patients. In this article, we summarize the current applications of TCM in the treatment of COVID-19 patients. Herein, we also offer an insight into the underlying mechanisms of the therapeutic effects of TCM, as well as introduce new naturally occurring compounds with anti-coronavirus activity, in order to provide a new and potential drug development strategy for the treatment of COVID-19.

17.
Neurobiol Dis ; 121: 230-239, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308244

RESUMEN

Brain microvascular endothelial cells (BMEC) are highly complex regulatory cells that communicate with other cells in the neurovascular unit. Cerebral ischemic injury is known to produce detectable synaptic dysfunction. This study aims to investigate whether endothelial cells in the brain regulate postnatal synaptic development and to elucidate their role in functional recovery after ischemia. Here, we found that in vivo engraftment of endothelial cells increased synaptic puncta and excitatory postsynaptic currents in layers 2/3 of the motor cortex. This pro-synaptogenic effect was blocked by the depletion of VEGF in the grafted BMEC. The in vitro results showed that BMEC conditioned medium enhanced spine and synapse formation but conditioned medium without VEGF had no such effects. Moreover, under pathological conditions, transplanted endothelial cells were capable of enhancing angiogenesis and synaptogenesis and improved motor function in the ischemic injury model. Collectively, our findings suggest that endothelial cells promote excitatory synaptogenesis via the paracrine factor VEGF during postnatal development and exert repair functions in hypoxia-ischemic neonatal mice. This study highlights the importance of the endothelium-neuron interaction not only in regulating neuronal development but also in maintaining healthy brain function.


Asunto(s)
Isquemia Encefálica/fisiopatología , Células Endoteliales/fisiología , Potenciales Postsinápticos Excitadores , Corteza Motora/irrigación sanguínea , Corteza Motora/crecimiento & desarrollo , Trastornos Motores/fisiopatología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Isquemia Encefálica/complicaciones , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Masculino , Ratones Endogámicos C57BL , Microvasos/fisiología , Trastornos Motores/etiología , Neovascularización Fisiológica , Tálamo/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
18.
Biomed Pharmacother ; 111: 99-108, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30579258

RESUMEN

BACKGROUND AND AIMS: The lack of valid therapeutic approach that can ameliorate the manifestations of NASH is a barrier to therapeutic development. Therefore, we investigate the novel role of Methyl Palmitate (MP) in preventing NASH and the possible mechanism involved. METHODS: 50 Male C57BL/6 J mice were randomly divided into 5 groups (n = 10). The control group was fed control diet; model group was fed MCD diet; MP 1 group was fed MCD diet supplemented with MP (75 mg/kg/day); MP 2 group was fed MCD plus MP diet (150 mg/kg/day); and MP 3 group was fed MCD plus MP diet (300 mg/kg/day). Histological staining's, and commercially available kits for serum ALT and AST and hepatic contents of TG, TC, MDA, SOD, and GSH were used to assess NASH. Furthermore, relative liver protein and gene expression levels were determined by Western Blot and qPCR, respectively. RESULTS: Mice fed MCD diet developed NASH, which was markedly improved by MP in a dose-dependent manner. MP treatment improved hepatic content of TG, TC, MDA, SOD and GSH and serum levels of ALT and AST. In vivo studies showed that MP treatment activated PPARα expression, that in turns, promoted ß-oxidation protein and gene expressions, suppressed TNFα, MCP1, TGFß1 and Colla1 protein and gene expression levels, contributing to the prevention of NASH. CONCLUSIONS: Our results indicated that MP could successfully prevent NASH. This effect of MP was mediated through induction of PPARα pathway. This study provides a novel therapeutic target that plays pivotal role in the prevention of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , PPAR alfa/biosíntesis , Palmitatos/uso terapéutico , Animales , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Palmitatos/farmacología
19.
Medicine (Baltimore) ; 97(35): e12166, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30170462

RESUMEN

Ginkgo biloba extract (GBE) is a plant extract obtained from the leaves of G biloba tree. The aim of this study was to evaluate the clinicopathologic characteristics and therapeutic effects of GBE on ischemic colitis (IC).Forty-seven patients with IC were divided as GBE group (n = 30) and routine group (n = 17). The routine group was given routine therapy, and the GBE group was given routine therapies plus GBE intravenous injection. Clinicopathologic characteristics, endoscopy findings, serum antioxidant enzymes, and inflammatory mediators were evaluated.About 89.3% initial symptom was acute-onset abdominal cramping and abdominal pain followed with hematochezia. The lesions were mainly located in sigmoid colon (80.8%). Serum level of superoxide dismutase (SOD) in patients with IC was significantly decreased (P < .05), while methane dicarboxylic aldehyde (MDA), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) levels were significantly increased (P < .05). However, serum procalcitonin (PCT) level showed no significant change. Treatment of GBE resulted in quick remittance of abdominal pain and hematochezia, and significant attenuation of colon macroscopic and histologic damage in all patients. Furthermore, the treatment also significantly increased SOD levels, decreased MDA, TNF-α, and IL-6 levels (P < .05).Acute-onset abdominal cramping or abdominal pain followed with hematochezia was the mainly initial symptom of IC, and sigmoid and descending colons were the common vulnerable sites. GBE exerted a beneficial effect on IC with faster symptom relief and better mucosal healing, possibly through scavenging oxidative-free radicals and downregulating inflammatory mediators. GBE may be a promising candidate for protection against IC.


Asunto(s)
Colitis Isquémica/tratamiento farmacológico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Enfermedad Aguda , Anciano , Antioxidantes/análisis , Colitis Isquémica/sangre , Femenino , Ginkgo biloba , Humanos , Mediadores de Inflamación/sangre , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
20.
Huan Jing Ke Xue ; 39(7): 3187-3193, 2018 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-29962142

RESUMEN

A constructed wetland with Acorus calamus L. was built. Straw biochar, reed biochar, and sawdust biochar was added into the constructed wetland individually to study the effect of different biochars on the root morphology, dissolved oxygen, and purification ability of the constructed wetland. The results show that the total root length, total projection area, total volume, total surface area, root number, branch number, and root dry weight of Acorus calamus L. significantly increased when all three kinds of biochar were added into the constructed wetland (P<0.05). Similarly, adding the biochars into the constructed wetland also significantly increased dissolved oxygen content in the wetland (P<0.05). Addition of sawdust biochar into the constructed wetland increased the root length, projection area, surface area, total volume, number of root tips, number of branches, and root dry weight of Acorus calamus L. by 96.1%, 106.2%, 185.6%, 172.5%, 75.3%, 121.6%, and 84.9%, respectively. After adding biochars into the constructed wetland, the root morphology of Acorus calamus L. and dissolved oxygen content was significantly correlated with removal rate of TN, TP, and COD, respectively. Addition of sawdust biochar into the constructed wetland significantly increased the removal rates of total nitrogen, total phosphorus, and COD when the hydraulic load was 0.022 m3·(m2·d)-1 (P<0.05). These results suggested that the addition of sawdust biochar to the constructed wetland increased the root growth of Acorus calamus L. and enhanced dissolved oxygen content, resulting in purification capacity of the constructed wetland.


Asunto(s)
Acorus/crecimiento & desarrollo , Carbón Orgánico , Raíces de Plantas/crecimiento & desarrollo , Humedales , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA