Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(12): 4837-4850, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36930948

RESUMEN

Excessive drinking has been listed by the World Health Organization as the fifth major risk factor; especially the liver, as the core organ of alcohol metabolism, is prone to organic lesions. Probiotics have received attention due to their bioactivity for liver protection. The beneficial effects of probiotics on hosts are related to their physiological functions. Therefore, based on the concept of second-generation synbiotes, this study explored the protective effects of four dietary polyphenols on the stress tolerance, hydrophobicity, adhesion, and digestive characteristics of L. rhamnosus 1.0320. L. rhamnosus 1.0320 had the best synergistic effect with dihydromyricetin (DMY). Therefore, this combination was selected as a synbiotic supplement to explore the protective effect on acute alcohol exposure-induced hepatic impairment. The results showed that L. rhamnosus 1.0320 combined with DMY restored the intestinal barrier by upregulating short-chain fatty acid levels and activated the adenosine 5'-monophosphate-activated protein kinase-mediated lipid metabolism pathway to inhibit oxidative stress, inflammation, and lipid accumulation in the liver. Furthermore, 109 CFU/mouse/d L. rhamnosus 1.0320 and 50 mg/kg/d DMY by gavage were identified as the optimal doses for protection against acute alcohol expose-induced hepatic impairment. This study provides new insights into alleviating acute alcoholic hepatic impairment by targeting intestinal metabolites through the gut-liver axis.


Asunto(s)
Lacticaseibacillus rhamnosus , Hepatopatías Alcohólicas , Probióticos , Ratones , Animales , Lacticaseibacillus , Metabolismo de los Lípidos , Proteínas Quinasas/metabolismo , Hígado/metabolismo , Etanol/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/prevención & control , Hepatopatías Alcohólicas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Transducción de Señal , Adenosina/metabolismo
2.
Food Chem ; 402: 134253, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162172

RESUMEN

In this study, shell-core fibers were successfully prepared by using Eudragit S100 (ES100) and poly(vinyl alcohol) (PVA)/pectin (PEC) through coaxial electrospinning technology. The electrospun fiber was characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Thermo-gravimetric analysis (TGA) showed that the coaxial electrospun fiber encapsulated with Lactobacillus rhamnosus 1.0320 (L. rhamnosus) had higher thermal stability than the electrospun fiber prepared by uniaxial electrospinning. L. rhamnosus encapsulated by coaxial electrospun fiber maintained 90.07% and 91.96% survivability in simulated gastric and intestinal fluids. After continuous simulated gastrointestinal fluid treatment, the survival rate of L. rhamnosus encapsulated by coaxial electrospun fiber was 81.40%. The results indicate that shell-core fiber-encapsulated probiotics can improve the tolerance of probiotics to the harsh environment of gastrointestinal tract. The fiber prepared in this study can be applied to the preparation of functional fermented food such as probiotic yogurt fermentation in the future.


Asunto(s)
Lacticaseibacillus rhamnosus , Nanofibras , Probióticos , Alcohol Polivinílico/química , Fibras de la Dieta , Probióticos/química , Pectinas , Nanofibras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA