Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin J Integr Med ; 28(9): 785-793, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35840853

RESUMEN

OBJECTIVE: To investigate the regulatory roles of Shexiang Baoxin Pill (SXBXW) in neointimal formation and vascular smooth muscle cells (VSMCs) invasion and apoptosis as well as the potential molecular mechanisms using cultured VSMCs model of vascular injury (platelet-derived growth factor (PDGF)-BB-stimulated) in vitro. METHODS: VSMCs were randomly assigned to 5 groups: blank, PDGF-BB (20 ng/mL+ 0.1% DMSO), SXBXW-L (PDGF-BB 20 ng/mL + SXBXW low dose 0.625 g/L), SXBXW-M (PDGF-BB 20 ng/mL + SXBXW medium dose 1.25 g/L) and SXBXW-H (PDGF-BB 20 ng/mL+ SXBXW high dose 2.5 g/L) group. Cell proliferation was assessed using cell counting kit-8 (CCK-8) assay and bromodeoxyuridine (BrdU) incorporation assay, the migration effects were detected by Transwell assay, cell apoptosis rate was measured by the Annexin V/propidium iodide (PI) apoptosis kit. The markers of contractile phenotype of VSMCs were detected with immunofluorescent staining. To validate the effects of miR-451 in regulating proliferation, migration and apoptosis treated with SXBXW, miR-451 overexpression experiments were performed, the VSMCs were exposed to PDGF-BB 20 ng/mL + 0.1% DMSO and later divided into 4 groups: mimic-NC (multiplicity of infection, MOI=50), SXBXW (1.25 g/L) + mimic-NC, mimic-miR451 (MOI=50), and SXBXW (1.25 g/L) + mimic-miR451, and alterations of proteins related to the miR-451 pathway were analyzed using Western blot. RESULTS: PDGF-BB induced VSMCs injury causes acceleration of proliferation and migration. SXBXW inhibited phenotypic switching, proliferation and migration and promoted cell apoptosis in PDGF-BB-induced VSMCs. In addition, miR-451 was shown to be down-regulated in the VSMCs following PDGF-BB stimulation. SXBXW treatment enhanced the expression of miR-451 in PDGF-BB-induced VSMCs (P<0.05). Compared with SXBXW + mimic-NC and mimic-miR451 groups, the expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and p53 was further reduced in SXBXW + mimic-miR451 group, while activating transcription factor 2 (ATF2) was increased in VSMCs (P<0.05). CONCLUSION: SXBXW regulated proliferation, migration and apoptosis via activation of miR-451 through ATF2, p53 and Ywhaz in PDGF-BB-stimulated VSMCs.


Asunto(s)
MicroARNs , Músculo Liso Vascular , Apoptosis , Becaplermina/metabolismo , Becaplermina/farmacología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Medicamentos Herbarios Chinos , Humanos , Hiperplasia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos del Músculo Liso , Proteína p53 Supresora de Tumor/metabolismo
2.
Front Pharmacol ; 13: 878526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517807

RESUMEN

Aim: The present study aimed to explore the potential herb-drug interactions (HDI) between Shengmai injection (SMI) and losartan potassium (LOS) based on the expression profiles of cytochromes P450 (CYP450) and drug transporters in rat and in vitro. Methods: Different concentrations of SMI were used to explore the influence of SMI on the antihypertensive efficacy of LOS in the hypertension rat model established by N (omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks. Subsequently, the serum concentration levels of LOS and losartan carboxylic acid (EXP3174) were determined by Liquid Chromatography Mass Spectrometry (LC-MS) and pharmacokinetic analysis. Human liver microsomes, human multidrug resistance protein 1 (MDR1/P-gp), and breast cancer resistance protein (BCRP) vesicles, human embryonic kidney 293 cell line with stable expression of the organic anion transporting polypeptide 1B1 (HEK293-OATP1B1 cells) and mock-transfected HEK293 (HEK293-MOCK) cells were used to verify the effects of SMI on CYP450 enzymes and drug transporters in vitro. Results: Low, medium, and high concentrations of SMI increased the antihypertensive efficacy of LOS to varying degrees. The high dose SMI increased the half-life (t 1/2 ), the maximum plasma concentration (C max), the area under the plasma concentration-time curve (AUC) from time zero to the time of the last measurable plasma concentration (AUC 0-t ), AUC from time zero to infinity (AUC 0-∞ ), and mean residence time (MRT) values of LOS and decreased its apparent volume of distribution (Vd) and clearance (CL) values. The AUC 0-t , AUC 0-∞ , and MRT of LOS were increased, whereas the CL was decreased by the medium concentration of SMI. In addition, the high, medium, and low doses of SMI increased the relative bioavailability (Frel) of LOS. SMI exhibited no significant effects on the pharmacokinetics of EXP3174. In vitro, SMI exhibited different suppressive effects on the enzyme activity levels of CYP1A2 (6.12%), CYP2B6 (2.72%), CYP2C9 (14.31%), CYP2C19 (12.96%), CYP2D6 (12.26%), CYP3A4 (3.72%), CYP2C8 (10.00-30.00%), MDR1 (0.75%), OATP1B1(2.03%), and BCRP (0.15%). Conclusion: In conclusion, SMI improved the antihypertensive efficacy of LOS in the L-NAME-induced hypertension rat model by increasing the concentration of LOS, while leaving the concentration of EXP3174 intact. SMI affected the pharmacokinetic properties of LOS by decreasing the elimination of LOS. These effects might partly be attributed to the inhibition of the activities of CYP3A4, CYP2C9, and of the drug transporters (P-gp, BCRP, and OATP1B1) by SMI, which need further scrutiny.

3.
J Ethnopharmacol ; 280: 114408, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252529

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Suxiao jiuxin pill (SJP) is a Chinese medical drug with anti-inflammatory, anti-apoptotic, and vasodilatory function. It is widely used in combination with other drugs for the treatment of coronary heart disease (CHD) and angina. Nevertheless, the effect of SJP on Cytochrome P450 (CYP450) enzymes and transporters' activity related to drug metabolism is rarely studied. OBJECTIVE: The aim of this study was to investigate the effect of SJP on the activity of drug-metabolizing enzyme CYP450 and transporters. MATERIALS AND METHODS: Human primary hepatocytes were used in present study. Probe substrates of CYP450 enzymes were incubated in human liver microsomes (HLMs) with and without SJP while IC50 values were calculated. The inhibitory effect of SJP on the activity of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 was evaluated. The inducing effect of SJP on the activity of CYP1A2, 2B6 and 3A4 was accessed. The inhibition of SJP on human OATP1B1 was investigated through cell-based assay. The inhibition of SJP on human MDR1 and BCRP was also estimated by means of the vesicles assay. RESULTS: The results showed that the SJP under the concentration of 1000 µg/mL could inhibit the activity of CYP1A2, 2B6, 2C19, and 3A4, with IC50 values of 189.7, 308.2, 331.2 and 805.7 µg/mL, respectively. There was no inhibitory effect found in the other 3 liver drug enzyme subtypes. In addition, SJP showed no induction effect on CYP1A2, 2B6 and 3A4, however it had a significant inhibitory effect on human-derived OATP1B1 at the concentration of 100 and 1000 µg/mL, with the IC50 value of 21.9 µg/mL. Simultaneously, the SJP inhibited BCRP at high concentration of 1000 µg/mL but did not affect human MDR1. CONCLUSIONS: Based on these research results above, it is suggested that the SJP can affect some of the CYP450 enzymes and transporters' activity. When used in combination with related conventional drugs, potential herb-drug interactions should be considered.


Asunto(s)
Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Interacciones de Hierba-Droga , Proteínas de Transporte de Membrana/efectos de los fármacos , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Células HEK293 , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Proteínas de Transporte de Membrana/metabolismo , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo
4.
Front Pharmacol ; 10: 1095, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616303

RESUMEN

Shengmai injection (SMI), a traditional Chinese herbal medicine extracted from Panax ginseng C.A. Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., has been used to treat acute and chronic heart failure. This study aimed to further clarify the effects of SMI on energy metabolism. SMI could improve cell-survival rate and also reduce myocardial cell hypertrophy and apoptosis. Mitochondria are important sites of cellular energy metabolism, and SMI protects mitochondrial function which was evaluated by mitochondrial ultrastructure, mitochondrial respiratory control ratio (RCR), and mitochondrial membrane potential (ΔΨm) in this study. The expression levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (PCr) increased. The expression levels of free fatty acid oxidation [carnitine palmitoyltransferase-1 (CPT-1)], glucose oxidation [glucose transporter-4 (GLUT-4)], and mitochondrial biogenesis-related genes (peroxisome proliferator-activated receptor-γ coactivator-1α [PGC-1α]) were upregulated after SMI treatment. AMP-activated protein kinase (AMPK) is an important signaling pathway regulating energy metabolism and also can regulate the above-mentioned indicators. In the present study, SMI was found to promote phosphorylation of AMPK. However, the effects of SMI on fatty acid, glucose oxidation, mitochondrial biogenesis, as well as inhibiting apoptosis of hypertrophic cardiomyocytes were partly blocked by AMPK inhibitor-compound C. Moreover, decreased myocardial hypertrophy and apoptosis treated by SMI were inhibited by AMPK knockdown with shAMPK to a certain degree and AMPK knockdown almost abolished the SMI-induced increase in the expression of GLUT-4, CPT-1, and PGC-1α. These data suggest that SMI suppressed Ang II-induced cardiomyocyte hypertrophy and apoptosis via activation of the AMPK signaling pathway through energy-dependent mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA