Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 317: 116852, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37390879

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a common difficult disease with a high disability rate. Siegesbeckia orientalis L. (SO), a Chinese medicinal herb that is commonly used for treating RA in clinical practice. While, the anti-RA effect and the mechanisms of action of SO, as well as its active compound(s) have not been elucidated clearly. AIM OF THE STUDY: We aim to explore the molecular mechanism of SO against RA by using network pharmacology analysis, as well as the in vitro and in vivo experimental validations, and to explore the potential bioactive compound(s) in SO. METHODS: Network pharmacology is an advanced technology that provides us an efficient way to study the therapeutic actions of herbs with the underlying mechanisms of action delineated. Here, we used this approach to explore the anti-RA effects of SO, and then the molecular biological approaches were used to verify the prediction. We first established a drug-ingredient-target-disease network and a protein-protein interaction (PPI) network of SO-related RA targets, followed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Further, we used lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and vascular endothelial growth factor-A (VEGFA)-induced human umbilical vein endothelial cell (HUVEC) models, as well as adjuvant-induced arthritis (AIA) rat model to validate the anti-RA effects of SO. The chemical profile of SO was also determined by using the UHPLC-TOF-MS/MS analysis. RESULTS: Network pharmacology analysis highlighted inflammatory- and angiogenesis-related signaling pathways as promising pathways that mediate the anti-RA effects of SO. Further, in both in vivo and in vitro models, we found that the anti-RA effect of SO is at least partially due to the inhibition of toll like receptor 4 (TLR4) signaling. Molecular docking analysis revealed that luteolin, an active compound in SO, shows the highest degree of connections in compound-target network; moreover, it has a direct binding to the TLR4/MD-2 complex, which is confirmed in cell models. Besides, more than forty compounds including luteolin, darutoside and kaempferol corresponding to their individual peaks were identified tentatively via matching with the empirical molecular formulae and their mass fragments. CONCLUSION: We found that SO and its active compound luteolin exhibit anti-RA activities and potently inhibit TLR4 signaling both in vitro and in vivo. These findings not only indicate the advantage of network pharmacology in the discovery of herb-based therapeutics for treating diseases, but also suggest that SO and its active compound(s) could be developed as potential anti-RA therapeutic drugs.


Asunto(s)
Artritis Reumatoide , Asteraceae , Medicamentos Herbarios Chinos , Humanos , Animales , Ratas , Simulación del Acoplamiento Molecular , Luteolina/farmacología , Luteolina/uso terapéutico , Sigesbeckia , Receptor Toll-Like 4 , Factor A de Crecimiento Endotelial Vascular , Farmacología en Red , Espectrometría de Masas en Tándem , Artritis Reumatoide/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
J Ethnopharmacol ; 292: 115027, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091011

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Centipeda minima (CM), the dried whole plant of Centipeda minima (L.) A. Braun and Aschers, has been used as a traditional Chinese medicinal herb for thousands of years for the treatments of rhinitis, sinusitis, cough and asthmatic diseases. This review aimed to evaluate the therapeutic potential of CM by summarizing its phytochemistry, pharmacology, clinical application and safety. METHODS: This review summarizes the published studies on CM in the Chinese Pharmacopoeia and literature databases including PubMed, Web of Science, Baidu Scholar, Wiley and China Knowledge Resource Integrated Database (CNKI), as well as the research articles on the phytochemistry, pharmacology, clinical application and safety of CM. RESULTS: A total of 191 compounds have been isolated and identified from CM, including terpenes, flavonoids, sterols, phenols, organic acids and volatile oils. In addition, the pharmacological effects of CM, such as anti-cancer, anti-inflammatory and anti-bacterial activities, have also been evaluated by both in vitro and in vivo studies. The signaling pathways and mechanisms of action underlying the anti-cancer effects of CM have been revealed. Clinical applications of CM mainly include rhinitis and sinusitis, gynecological inflammation, cough, as well as asthma. CONCLUSION: CM is a medicinal herb that possesses many therapeutic effects. Cutting-edge technology and system biology could provide us a more comprehensive understanding of the therapeutic effects, constituting components and toxicity of CM, which are the prerequisites for its translation into therapeutics for various disease treatments.


Asunto(s)
Asteraceae , Plantas Medicinales , Rinitis , Tos/tratamiento farmacológico , Etnofarmacología , Humanos , Medicina Tradicional China , Fitoquímicos/efectos adversos , Extractos Vegetales/farmacología , Rinitis/tratamiento farmacológico
3.
Front Pharmacol ; 12: 630319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434104

RESUMEN

Siegesbeckia orientalis L. (SO) is a commonly used Chinese medicinal herb. It has long been used as a remedy in traditional Chinese medicine (TCM) for symptoms that resemble inflammatory joint disorders. However, it is slightly toxic. According to the TCM theory, processing can reduce the toxicity of the herbs. Here, we performed metabolomics to determine whether processing with rice wine reduces the toxicity of raw SO, and to explore the mechanisms underlying the raw SO-induced toxicity and the toxicity-reducing effect of processing. Our results showed that raw SO has long-term toxicity in rats. It significantly elevated the serum level of LDH and caused histopathological damages in the lung tissues. It is worth noting that the LDH level in the PSO group was lower than that in the raw SO group, and the damages in lung tissues were relatively mild in PSO-treated rats, suggesting that processing reduces the pulmonary toxicity of the raw. Moreover, a total of 32 significantly changed metabolites were identified. Based on the MetaboAnalyst pathway analysis, we found that two characteristic metabolic pathways including alanine, aspartate and glutamate metabolism and glycerophospholipid metabolism were only changed in the raw SO group, while histidine metabolism was only changed in the PSO group, which suggests that induction of oxidative stress contributes to raw SO-induced pulmonary toxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on how raw SO induces pulmonary toxicity and how the toxicity can be reduced by processing. This study not only provides scientific justifications for the traditional processing theory of SO, but also helps to optimize the processing protocol and the clinical drug combination of SO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA