Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 102(12): e33393, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961150

RESUMEN

The etiology of adolescent myopia involves genetic and environmental factors. The pathological mechanism of modern medicine includes blood perfusion, changes in blood molecules, neurotransmitters, and sclera remodeling. Chinese medicine believes that myopia is mainly related to the deficiency of liver blood and spleen and stomach disorders. The prevention and treatment of myopia in adolescents are very important, but in terms of the current incidence of myopia in adolescents and the level of clinical diagnosis and treatment, its prevention and treatment are insufficient. Modern medicine and traditional Chinese medicine both pay attention to integrity, so adolescent myopia should not only pay attention to eye changes but also pay attention to other body systems and other aspects of change. Intestinal flora has become a research hotspot in recent years, and it has been found that it is closely associated with multi-system and multi-type diseases. No studies have directly investigated the link between Intestinal flora and myopia in adolescents. Therefore, by summarizing the pathological mechanism of adolescent myopia and the connection between intestinal flora and the pathological mechanism of adolescent myopia, this paper analyzes the possible pathological mechanism of the influence of intestinal flora on adolescent myopia, providing a theoretical basis for future studies on the correlation between changes of intestinal flora and its metabolites and the incidence of adolescent myopia, which is of great significance for the study on the risk prediction of adolescent myopia.


Asunto(s)
Microbioma Gastrointestinal , Miopía , Humanos , Adolescente , Miopía/epidemiología , Miopía/etiología , Medicina Tradicional China , Pueblo Asiatico , Esclerótica
2.
Brain Res ; 1770: 147626, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418356

RESUMEN

Microglial polarization mediated neuroinflammation plays an important role in the pathological process of stroke. The aim of this study is to determine whether baicalein indirectly ameliorates neuronal injury through modulating microglial polarization after stroke and if so, then by what mechanism. The effects of baicalein on microglial polarization were revealed through the middle cerebral artery occlusion mouse model (MCAO, n = 6), the lipopolysaccharide (LPS) + interferon-γ (IFN-γ) and oxygen-glucose deprivation (OGD) induced neuroinflammatory microglia model (BV2, n = 3), respectively. Mice were treated with baicalein (100 mg/kg, i.g.) after reperfusion, and followed by daily administrations for 3 days. Results showed that the infarct volumes at 3 d in vehicle and baicalein-treated MCAO mice were 91.18 ± 4.02% and 55.36 ± 4.10%. Baicalein improved sensorimotor functions (p < 0.01) after MCAO. Real-time PCR revealed that baicalein decreased proinflammatory markers expression (p < 0.05), while elevated the anti-inflammatory markers (p < 0.05) in vivo and in vitro. Both western blot and immunofluorescent staining further confirmed that baicalein reduced proinflammatory marker CD16 levels (p < 0.01) and enhanced anti-inflammatory marker CD206 or Arg-1 levels (p < 0.05). Notably, baicalein suppressed the release of proinflammatory cytokines (p < 0.05) and nitric oxide (NO, p < 0.001). Mechanistically, baicalein prevented increases in TLR4 protein levels (p < 0.001), the phosphorylation of IKBα and p65 (p < 0.01), and the nuclear translocation of NF-κB p65 (p < 0.05). The NF-κB inhibitor, BAY 11-7085, enhanced the inhibitory effect of baicalein on the proinflammatory microglial polarization. Baicalein also inhibited the phosphorylation of signal transducer and activator of transcription 1 (STAT1, p < 0.001). A microglia-neuron co-culture system revealed that baicalein driven neuroprotection against OGD induced neuronal damage through modulating microglial polarization (p < 0.05). Baicalein indirectly ameliorates neuronal injury after stroke by polarizing microglia toward the anti-inflammatory phenotype via inhibition of the TLR4/NF-κB pathway and down-regulation of phosphorylated STAT1, suggesting that baicalein might serve a potential therapy for stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Flavanonas/uso terapéutico , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Polaridad Celular/efectos de los fármacos , Flavanonas/farmacología , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA