Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phytomedicine ; 61: 152850, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31035054

RESUMEN

BACKGROUD: Endothelial progenitor cells (EPCs) have been characterized as one of the key effectors of endothelial healing. The effect of Danhong injection (DHI), the most widely prescribed Chinese medicine for coronary heart disease (CHD), on EPCs mobilization remains unclear. PURPOSE: We aimed to assess the effect of DHI on EPCs mobilization to repair percutaneous coronary intervention (PCI) induced vascular injury, and to investigate the characteristics and potential mechanism of DHI on EPCs mobilization. METHOD: Forty-two patients with CHD underwent PCI and received stent implantation were enrolled in a Phase II clinical trials. All patients received routine western medical treatment after PCI, patients of DHI group received DHI in addition. The levels of CECs, cytokines (vWF, IL-6, CRP) and EPCs were analyzed at baseline, post-PCI and after treatment. To investigate the characteristics of DHI on EPCs mobilization, 12 healthy volunteers received intravenous infusion of DHI once and the other 12 received for 7 days. EPCs enumeration were done at a series of time points. At last we tested the effect of DHI and three chemical constituents of DHI (danshensu; lithospermic acid, LA; salvianolic acid D, SaD) on EPCs level and expression of Akt, eNOS and MMP-9 in bone marrow cells of myocardial infarction (MI) mice. RESULTS: In the DHI group the angina symptoms were improved, the levels of cytokines and CECs were reduced; while EPCs population was increased after treatment. In the phase I clinical trials, EPCs counts reached a plateau phase in 9 h and maintained for more than 10 h after a single dose. After continuous administration, EPCs levels plateaued on the 3rd or 4th day, and maintain till 1 day after the withdrawal, then its levels gradually declined. DHI treatment induced a timely dependent mobilization of EPCs. DHI promoted EPCs mobilization via upregulating the expression of Akt, eNOS and MMP-9 in BM. LA and SaD have played a valuable role in EPCs mobilization. CONCLUSION: These initial results demonstrated that DHI is effective in alleviating endothelial injury and promoting endothelial repair through enhancing EPCs mobilization and revealed the effect feature and possible mechanisms of DHI in mobilizing EPCs.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/cirugía , Medicamentos Herbarios Chinos/farmacología , Células Progenitoras Endoteliales/efectos de los fármacos , Endotelio Vascular/lesiones , Anciano , Animales , Fármacos Cardiovasculares/administración & dosificación , Medicamentos Herbarios Chinos/administración & dosificación , Células Progenitoras Endoteliales/fisiología , Femenino , Humanos , Inyecciones , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Persona de Mediana Edad , Infarto del Miocardio/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Intervención Coronaria Percutánea/efectos adversos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Lesiones del Sistema Vascular/tratamiento farmacológico , Lesiones del Sistema Vascular/etiología
2.
Sci Rep ; 8(1): 3114, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449621

RESUMEN

Because of the serious side effects of the currently used bronchodilators, new compounds with similar functions must be developed. We screened several herbs and found that Polygonum aviculare L. contains ingredients that inhibit the precontraction of mouse and human airway smooth muscle (ASM). High K+-induced precontraction in ASM was completely inhibited by nifedipine, a selective blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). However, nifedipine only partially reduced the precontraction induced by acetylcholine chloride (ACH). Additionally, the ACH-induced precontraction was partly reduced by pyrazole-3 (Pyr3), a selective blocker of TRPC3 and stromal interaction molecule (STIM)/Orai channels. These channel-mediated currents were inhibited by the compounds present in P. aviculare extracts, suggesting that this inhibition was mediated by LVDCCs, TRPC3 and/or STIM/Orai channels. Moreover, these channel-mediated currents were inhibited by quercetin, which is present in P. aviculare extracts. Furthermore, quercetin inhibited ACH-induced precontraction in ASM. Overall, our data indicate that the ethyl acetate fraction of P. aviculare and quercetin can inhibit Ca2+-permeant LVDCCs, TRPC3 and STIM/Orai channels, which inhibits the precontraction of ASM. These findings suggest that P. aviculare could be used to develop new bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease.


Asunto(s)
Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Extractos Vegetales/farmacología , Polygonum/química , Quercetina/farmacología , Acetilcolina/farmacología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Liso/metabolismo , Nifedipino/farmacología , Canales Catiónicos TRPC/metabolismo
3.
Kidney Blood Press Res ; 43(1): 12-24, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29393225

RESUMEN

BACKGROUND/AIMS: High blood pressure is a major risk factor for chronic kidney disease. Currently, single-target anti-hypertensive drugs are not designed for high blood pressure-related organ damages. Danhong injection (DHI), made from the aqueous extracts of Radix Salviae miltiorrhizae and Flos Carthamus tinctorius, has various pharmacological effects, including BP lowering in SHR, mediated by the reduction of vascular remodeling and the up-regulation of Kallikrein-kinin system published recently by our team, yet if it renders renal protection remains unknown. The current study demonstrated a protective role of DHI in renal injury caused by hypertension and identified its molecular targets in the kidney of spontaneously hypertensive rats (SHR). METHODS: Adult SHR and age/gender-matched normotensive Wistar-Kyoto (WKY) rats were treated with DHI, Losartan, or saline for 4 weeks. Serum levels of Creatinine (CRE), Micro-albumin (mAlb), Beta2-microglobulin (ß2-MG), and Uric acid (UA) were detected using ELISA kits. Renal pathology was examined by hematoxylin and Eosin (H&E) stains. Microarray analysis was performed on kidney tissues, and gene expression changes were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses. RESULTS: Renal histopathological scores showed that SHR exhibited serious kidney injury compared to normotensive WKY rats. The intervention with DHI potently suppressed the renal injury biomarker (KIM-1) and kidney lesions compared to the untreated hypertensive subjects. Microarray analysis revealed that among the 124 genes that were differentially expressed by DHI treatment in SHR kidney, down-regulation of renal myoglobin (Mb) gene was the most prominent and was subsequently confirmed by qRT-PCR and Western blot analysis. CONCLUSION: Hypertension-induced renal injury in SHR may be alleviated by DHI in part by local suppression of Kidney injury molecule-1 and down-regulation of Myoglobin. However, if this effect is independent of the known anti-hypertensive action of DHI in blood vessel remains to be determined.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Hipertensión/complicaciones , Riñón/lesiones , Mioglobina/metabolismo , Animales , Moléculas de Adhesión Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Losartán/uso terapéutico , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
4.
Sci Rep ; 7(1): 4308, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28655904

RESUMEN

Although Danhong injection (DHI) is one of the most prescribed cardiovascular medicines in China, its therapeutic indications and mechanisms remain partially defined. We now identify molecular targets of DHI in resistance vasculatures and demonstrate its role in vascular function and blood pressure (BP) regulation. BP was determined in DHI, Losartan, and placebo- treated Spontaneously Hypertensive Rats (SHR) by both noninvasive and invasive measurements. Vasorelaxation was examined both in conduit and resistance vasculature by ex vivo aortic rings. Microarray analysis was performed and gene expression changes were verified by RT-qPCR and ELISA. Diastolic, systolic and mean BPs were significantly lower in DHI-treated SHR than controls by both tail-cuff and invasive BP measurements. In ex vivo rings, aortic and mesenteric vessels from SHR treated with DHI exhibited significantly greater acetylcholine-mediated relaxation. Among the 282 genes that are differentially expressed in microarray analysis, DHI treatment up-regulated the expression of kallikrein and plasma kallikrein B genes. DHI also significantly increased serum kallikrein content in SHR. Treatment with DHI significantly increased the ratio of aortic lumen to outer diameter. Therefore, the reduction of vascular remodeling and the up-regulation of Kallikrein-kinin system contribute, at least in part, to the antihypertensive effect of DHI in SHR.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Hipertensión/etiología , Hipertensión/fisiopatología , Sistema Calicreína-Quinina/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Biomarcadores , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Hipertensión/tratamiento farmacológico , Calicreínas/sangre , Masculino , Ratas , Ratas Endogámicas SHR , Vasodilatación/efectos de los fármacos
5.
PLoS One ; 11(12): e0167305, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27930695

RESUMEN

Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Medicina Tradicional China , PPAR delta/metabolismo , Enfermedad Arterial Periférica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
6.
Artículo en Inglés | MEDLINE | ID: mdl-27239213

RESUMEN

Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25763092

RESUMEN

The traditional herb Plumula Nelumbinis is widely used in the world because it has many biological activities, such as anti-inflammation, antioxidant, antihypertension, and butyrylcholinesterase inhibition. However, the action of Plumula Nelumbinis on airway smooth muscle (ASM) relaxation has not been investigated. A chloroform extract of Plumula Nelumbinis (CEPN) was prepared, which completely inhibited precontraction induced by high K(+) in a concentration-dependent manner in mouse tracheal rings, but it had no effect on resting tension. CEPN also blocked voltage-dependent L-type Ca(2+) channel- (VDCC-) mediated currents. In addition, ACh-induced precontraction was also completely blocked by CEPN and partially inhibited by nifedipine or pyrazole 3. Besides, CEPN partially reduced ACh-activated nonselective cation channel (NSCC) currents. Taken together, our data demonstrate that CEPN blocked VDCC and NSCC to inhibit Ca(2+) influx, resulting in relaxation of precontracted ASM. This finding indicates that CEPN would be a candidate of new potent bronchodilators.

8.
PLoS One ; 8(5): e63126, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23704894

RESUMEN

Circulating endothelial progenitor cells (circEPCs) of bone marrow (BM) origin contribute to postnatal neovascularization and represent a potential therapeutic target for ischemic disease. Statins are beneficial for ischemia disease and have been implicated to increase neovascularization via mechanisms independent of lipid lowering. However, the effect of Statins on EPC function is not completely understood. Here we sought to investigate the effects of Rosuvastatin (Ros) on EPC mobilization and EPC-mediated neovascularization during ischemic injury. In a mouse model of surgically-induced hindlimb ischemia (HLI), treatment of mice with low dose (0.1 mg/kg) but not high dose (5 mg/kg) significantly increased capillary density and accelerated blood flow recovery, as compared to saline-treated group. When HLI was induced in mice that had received Tie2/LacZ BM transplantation, Ros treatment led a significantly larger amount of endothelial cells (ECs) of BM origin incorporated at ischemic sites than saline. After treatment of mice with a single low dose of Ros, circEPCs significantly increased from 2 h, peaked at 4 h, declined until 8 h. In a growth-factor reduced Matrigel plug-in assay, Ros treatment for 5 d induced endothelial lineage differentiation in vivo. Interestingly, the enhanced circEPCs and post-HLI neovascularization stimulated by Ros were blunted in mice deficient in endothelial nitric oxide synthase (eNOS), and Ros increased p-Akt/p-eNOS levels in EPCs in vitro, indicating these effects of Ros are dependent on eNOS activity. We conclude that Ros increases circEPCs and promotes their de novo differentiation through eNOS pathway.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Células Endoteliales/citología , Fluorobencenos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pirimidinas/farmacología , Células Madre/citología , Sulfonamidas/farmacología , Animales , Médula Ósea/patología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Miembro Posterior/fisiopatología , Isquemia/patología , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Flujo Sanguíneo Regional/efectos de los fármacos , Rosuvastatina Cálcica , Células Madre/efectos de los fármacos , Células Madre/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA