Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 144: 109294, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092096

RESUMEN

N-acetylcysteine (NAC) positively contributes to enhancing animal health, regulating inflammation and reducing stress by participating in the synthesis of cysteine, glutathione, and taurine in the body. The present study aims to investigate the effects of dietary different levels of NAC on the morphology, function and physiological state of hepatopancreas in juvenile common carp (Cyprinus carpio). 450 common carps were randomly divided into 5 groups: N1 (basal diet), N2 (1.5 g/kg NAC diet), N3 (3.0 g/kg NAC diet), N4 (4.5 g/kg NAC diet) and N5 (6.0 g/kg NAC diet), and fed for 8 weeks. The results indicated that dietary 3.0-6.0 g/kg NAC reduced hepatopancreas lipid vacuoles and nuclear translocation, and inhibited apoptosis in common carp. Simultaneously, the activities of hepatopancreas alanine aminotransferase and aspartate aminotransferase progressively increased with rising dietary NAC levels. Dietary NAC enhanced the non-specific immune function of common carp, and exerted anti-inflammatory effects by inhibiting the MAPK/NF-κB signaling pathway. Additionally, dietary 3.0-6.0 g/kg NAC significantly improved the antioxidant capacity of common carp, which was associated with enhanced glutathione metabolism, clearance of ROS and the activation of Nrf2 signaling pathway. In summary, NAC has the potential to alleviate inflammation, mitigate oxidative stress and inhibit apoptosis via the MAPK/NF-κB/Nrf2 signaling pathway, thereby improving hepatopancreas function and health of common carp. The current findings provide a theoretical basis for promoting the application of NAC in aquaculture and ecological cultivation of aquatic animals.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Acetilcisteína/farmacología , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hepatopáncreas/metabolismo , Transducción de Señal , Dieta/veterinaria , Inflamación/veterinaria , Glutatión , Suplementos Dietéticos
2.
Fish Shellfish Immunol ; 106: 120-132, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32768707

RESUMEN

The heavy metal poisoning in humans and fish represents a significant global problem. Copper (Cu), as an essential micronutrient in human and animal metabolism, often accumulates excessively in aquatic environment. The microbial floc is rich in a variety of probiotics and bioactive compounds, which has been documented to have the functions of antioxidant and immunoenhancement. A 64-day experiment was conducted to investigate the protective effects and potential mechanisms of dietary supplementation of microbial floc and Cu exposure on inflammatory response, oxidative stress, intestinal apoptosis and barrier dysfunction in Rhynchocypris lagowski Dybowski. A total of four hundred fifty R. lagowski were fed five experimental diets containing graded levels of microbial floc from 0% to 16% (referred to as B0, B4, B8, B12 and B16, respectively) in the first 60 days, and 96 h of acute copper exposure test was carried out in the last four days. The results showed that microbial floc exerted significant alleviative effects by preventing alterations in the levels of bioaccumulation, caspase3, caspase8, caspase9, malondialdehyde and interleukin-6, improving the activities of lysozyme, complement C3, complement C4, immunoglobulin M, alkaline phosphatase, heat shock protein 70, heat shock protein 90 and glutathione peroxidase, catalase, superoxide dismutase, total antioxidant capacity. In addition, microbial floc assisted in regulating the expression of NF-κB/Nrf2 signaling molecule genes, including NF-κB, TNF-α, IL-1ß, IL-8, IL-10, TGF-ß, Keap1, Nrf2, Maf, HO-1, CAT, CuZn-SOD, GCLC and GPX. Overall, our results suggest that dietary supplementation with of microbial floc can alleviate copper-induced inflammation, oxidative stress, intestinal apoptosis and barrier dysfunction in R. lagowski. A suitable supplementation level of approximately 12% microbial floc is recommended in the present study.


Asunto(s)
Apoptosis/efectos de los fármacos , Cyprinidae/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/metabolismo , Probióticos/metabolismo , Alimentación Animal/análisis , Animales , Cobre/toxicidad , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Proteínas de Peces/metabolismo , Inflamación/inducido químicamente , Inflamación/veterinaria , Intestinos/efectos de los fármacos , Intestinos/fisiología , Fitoquímicos/administración & dosificación , Probióticos/administración & dosificación
3.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1274-1282, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31149756

RESUMEN

The effects of yeast culture (YC) supplementation and the dietary ratio of non-structural carbohydrate to fat (NSCFR) on growth performance, carcass traits and fatty acid profile of the longissimus dorsi (LD) muscle in lambs were determined in a 2 × 3 full factorial experiment. Thirty-six Small-tailed Han lambs were randomly divided into six groups with six replicates per group. The lambs were fed one of the six pelleted total mixed rations (TMRs) for 60 days after 15 adaption days. The six rations were formed by two NSCFRs (11.37 and 4.57) and three YC supplementation levels (0, 0.8 and 2.3 g/kg dietary dry matter). The average daily gain (ADG), dry matter intake (DMI) and feed conversion ratio (FCR) data of each lamb were recorded and calculated. All the lambs were slaughtered for determining carcass traits and fatty acid profile of the LD muscle. DMI was significantly increased (p < 0.05) in a quadratic fashion with 0.8 g/kg of YC supplementation. Carcass weight (CW) and dressing percentage (DP) were significantly increased (p < 0.05) in a linear fashion with 2.3 g/kg of YC supplementation. Animals fed with high-NSCFR diet had higher (p < 0.05) contents of myristoleic acid (C14:1), pentadecanoic acid (C15:0) and cis-10-heptadecenoic acid (C17:1), and lower (p < 0.05) stearic acid (C18:0) content in LD muscle than those fed with low-NSCFR diet. Moreover, ADG, growth rate (GR), backfat thickness (BFT), percentages of crude fat (CF) and crude protein (CP), SFAs, MUFAs and PUFAs in LD muscle, were significantly affected (p < 0.05) by interaction of dietary NSCFR and supplemental YC level. Overall, YC not only improved the growth performance and carcass traits of the animals but also modified the fatty acid profile of the LD muscle. Furthermore, the effects of YC supplementation may depend on dietary compositions.


Asunto(s)
Carbohidratos/administración & dosificación , Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos , Músculo Esquelético/química , Ovinos/crecimiento & desarrollo , Levaduras , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal/efectos de los fármacos , Dieta/veterinaria , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Músculo Esquelético/fisiología
4.
J Agric Food Chem ; 63(36): 7921-8, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26118494

RESUMEN

To study the mechanisms of tea catechins (TCs) in goat muscles against oxidative stress, skeletal muscle cells (SMCs) induced by H2O2 or not were incubated with TCs or 3H-1,2-dithiole-3-thione (D3T) and were defined as H2O2, H2O2D3T, H2O2TC, D3T, and TC treatments, respectively. Results showed that, similar to effects of D3T, TCs regulated mRNA and protein expression of antioxidant enzymes by suppressing Keap1 protein expression in SMCs from 1.58 ± 0.12 to 0.71 ± 0.21 and 1.03 ± 0.11 in H2O2TC and TC groups, respectively; however, effects differed in oxidative condition of cells and among enzymes. In stressed cells, TCs increased catalase and glutathione S-transferases (GST) activities (P < 0.001), whereas both enzymes' activities decreased (P < 0.001) to 2.97 ± 0.37 U/mg protein or 42.1 ± 1.85 mU/mg protein, respectively, in unstressed SMCs. Subsequently, an in vivo experiment in goats fed grain supplemented with TCs or D3T following infusion with H2O2 was conducted to further verify mechanisms of TC action. As seen in vitro, TCs reduced Keap1 protein expression (P < 0.001) from 2.11 ± 0.37 to 1.34 ± 0.13 and 1.43 ± 0.23 in H2O2TC and TC groups, respectively, in muscle. However, dietary TCs increased plasma CuZn superoxide dismutase and GST activities (P < 0.001) regardless of oxidative stress. Moreover, feeding TCs to goats under both conditions increased meat color and tenderness (P ≤ 0.001). In conclusion, TCs protected goat muscles against oxidative stress and subsequently improved meat quality by modulating phase 2 antioxidant enzymes and Keap1 expression.


Asunto(s)
Antioxidantes/metabolismo , Camellia sinensis/química , Catequina/farmacología , Carne/análisis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Catalasa/genética , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Cabras , Peróxido de Hidrógeno/toxicidad , Músculo Esquelético/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA