Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin J Integr Med ; 30(4): 322-329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37861963

RESUMEN

OBJECTIVE: To investigate the mechanistic basis for the anti-proliferation and anti-invasion effect of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) and celastrol combination treatment (TCCT) in glioblastoma cells. METHODS: Cell counting kit-8 was used to detect the effects of different concentrations of celastrol (0-16 µmol/L) and TRAIL (0-500 ng/mL) on the cell viability of glioblastoma cells. U87 cells were randomly divided into 4 groups, namely control, TRAIL (TRAIL 100 ng/mL), Cel (celastrol 0.5 µmol/L) and TCCT (TRAIL 100 ng/mL+ celastrol 0.5 µmol/L). Cell proliferation, migration, and invasion were detected by colony formation, wound healing, and Transwell assays, respectively. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed to assess the levels of epithelial-mesenchymal transition (EMT) markers (zona occludens, N-cadherin, vimentin, zinc finger E-box-binding homeobox, Slug, and ß-catenin). Wnt pathway was activated by lithium chloride (LiCl, 20 mol/L) and the mechanism for action of TCCT was explored. RESULTS: Celastrol and TRAIL synergistically inhibited the proliferation, migration, invasion, and EMT of U87 cells (P<0.01). TCCT up-regulated the expression of GSK-3ß and down-regulated the expression of ß-catenin and its associated proteins (P<0.05 or P<0.01), including c-Myc, Cyclin-D1, and matrix metalloproteinase (MMP)-2. In addition, LiCl, an activator of the Wnt signaling pathway, restored the inhibitory effects of TCCT on the expression of ß-catenin and its downstream genes, as well as the migration and invasion of glioblastoma cells (P<0.05 or P<0.01). CONCLUSIONS: Celastrol and TRAIL can synergistically suppress glioblastoma cell migration, invasion, and EMT, potentially through inhibition of Wnt/ß-catenin pathway. This underlies a novel mechanism of action for TCCT as an effective therapy for glioblastoma.


Asunto(s)
Glioblastoma , Triterpenos Pentacíclicos , Vía de Señalización Wnt , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ligandos , Línea Celular Tumoral , Apoptosis , Factores de Necrosis Tumoral/farmacología , Proliferación Celular , Movimiento Celular , Transición Epitelial-Mesenquimal
2.
Huan Jing Ke Xue ; 37(10): 4062-4068, 2016 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-29964444

RESUMEN

With Chinese medicinal herbal residues and municipal sludge as raw materials for co-composting experiment, the effect of the material ratio and addition time of Chinese medicinal herbal residues on the composting efficiency were investigated, including the change of the temperature, organic matter, ammonia nitrogen, and activity of protease. The best composting conditions were determined based on the results. The experimental results showed that the temperature of the pile was raised in the presence of 60 g Chinese medicinal herbal residues as carbon source and 300 g municipal sludge, the ammonia volatilization was reduced and the activity of protease was improved. The ammonia volatilization was reduced by 35.9% and the activity of protease was increased by 80.5% in 15 d, respectively. Especially, in the early stage, addition of Chinese medicinal herbal residues as conditioner could increase the organic matter degradation. Thus, the composting process was accelerated. Changes in the UV-visible and fluorescence characteristics of dissolved organic matter (DOM) during the co-composting process were discussed. The treatment with Chinese medicinal herbal residues improved the maturity of the compost. Moreover, phospholipid fatty acid (PLFA) method was used to estimate the microbial community structure changes. It showed that the number of microbial community such as fungi and Gram negative bacteria increased with addition of Chinese medicinal herbal residues.


Asunto(s)
Amoníaco/química , Compostaje , Residuos de Medicamentos/química , Medicamentos Herbarios Chinos/química , Aguas del Alcantarillado/química , Hongos , Bacterias Gramnegativas , Suelo
3.
Zhongguo Zhong Yao Za Zhi ; 41(3): 451-455, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-28868863

RESUMEN

Rosa roxburghii, a kind of the medical and edible plants belonging to the Rosaceae family, is widely distributed in the southwest districts of China, especially Guizhou province. Now, by reason of the extensive bioactivities, the plant is widely used in the field of food, health product, drug, and so on. In the course of our continuing search for the bioactive constituents, thirteen compounds were isolated from R. roxburghii, and their structures were determined on the basis of physicochemical property, spectroscopic data and comparison with the literatures, as 2-oxo pomolic acid(1), 1ß-hydroxyeuscaphic acid(2), euscaphic acid(3), arjunic acid(4), tormentic acid(5), kaiiichigeside F1(6), rosamultin(7), arjunetin(8), 2ɑ, 3ɑ, 19ɑ-trihydroxy-olean-12-en-28-oic acid 28-O-ß-D-glucopyranoside(9), 2α, 3α, 19α, 24-tetrahydroxyolean-12-en-28-oic-acid 28-O-ß-D-glucopyranosyl ester(10), pyrogallic acid (11), daucosterol(12), and 1, 2-decanediol(13). Compounds 9 and 10 were firstly obtained from Rosaceae family, and compounds 1,4,5,9-11,13 were isolated from this plant for the first time.


Asunto(s)
Extractos Vegetales/química , Rosa/química , China , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Plantas Comestibles/química , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA