Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Ethnopharmacol ; 308: 116299, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36842721

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Longae Rhizoma (CLR) is a safe natural herbal medicine, and which has been widely used for centuries as functional food and health products, but its effects on angiogenesis and related underlying mechanism remain unclear. AIM OF THE STUDY: The abnormal angiogenesis is closely related with various diseases, and therefore the precise control of angiogenesis is of great importance. The well-known angiogenic factor, vascular endothelial growth factor (VEGF), mediates angiogenesis and induces multiple signalling pathways via binding to VEGF receptor (VEGFR). The attenuation of VEGF-triggered angiogenic-related signalling pathways may relieve various diseases through suppression of angiogenesis. Here, we aimed to elucidate that CLR extract could exert striking anti-angiogenic activities both in vitro and in vivo. MATERIALS AND METHODS: The viability of human umbilical vascular endothelial cell (HUVEC) was examined by LDH and MTT assays. Migrative and invasive ability of the endothelial cells were independently evaluated by wound healing and transwell assays. The activities of CLR extract on in vitro angiogenesis was tested by tube formation assay. In vivo vascularization was determined by using zebrafish embryo model in the present of CLR extract. Western blotting was applied to determine the phosphorylated levels of VEGFR2, PI3K, AKT and eNOS. Besides, the levels of nitric oxide (NO) and reactive oxygen species (ROS) were separately evaluated by Griess assay and 2'7'-dichlorofluorescein diacetate reaction. In addition, the cell migrative ability of cancer cell was estimated by using cultured human colon carcinoma cells (HT-29 cell line), and immunofluorescence assay was applied to evaluate the effect of CLR extract on nuclear translocation of NF-κB p65 subunit in the VEGF-treated HT-29 cultures. RESULTS: CLR extract significantly suppressed a series of VEGF-mediated angiogenic responses, including endothelial cell proliferation, migration, invasion, and tube formation. Moreover, CLR extract reduced in vivo sub-intestinal vessel formation in zebrafish embryo model. Mechanistically, the extract of CLR attenuated the VEGF-triggered signalling, as demonstrated by decreased level of phosphorylated VEGFR2 and subsequently inactivated its downstream regulators, e.g. phospho-PI3K, phospho-AKT and phospho-eNOS. The production of NO and formation of ROS were markedly inhibited in HUVECs. Furthermore, CLR extract suppressed cell migration and NF-κB translocation in cultured HT-29 cells. CONCLUSIONS: These preclinical findings demonstrate that the extract of CLR remarkably attenuates angiogenesis and which has great potential as a natural drug candidate with excellent anti-angiogenic activity.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular , Animales , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pez Cebra , Fosfatidilinositol 3-Quinasas/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Extractos Vegetales/farmacología , Movimiento Celular , Proliferación Celular , Inhibidores de la Angiogénesis/farmacología
2.
Fish Shellfish Immunol ; 127: 521-529, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35792347

RESUMEN

The root of Scutellaria baicalensis (Scutellaria Radix) has been used as herbal medicine for years in China; however, its stem and leaf (aerial part) are considered as waste. The water extract of aerial part of S. baicalensis, named as SBA, having anti-microbial property has been applied in fish aquaculture. To extend the usage of SBA in fish feeding, SBA was employed to feed pearl gentian grouper (a hybrid of Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂), and subsequently the total fish output, the levels of digestive enzymes and inflammatory cytokines were determined. Feeding the fish with different doses of SBA for two months, the body length and weight were significantly increased by 5%-10%. In parallel, the expressions of alkaline phosphatase and growth-related factors in bone, liver and muscle of SBA-fed fish were doubled, which could account the growth promoting effect of SBA. Besides, the activity of digestive enzyme, lipase, and the expressions of anti-inflammatory cytokines were markedly stimulated by 2-3 times under the feeding of 3% SBA-containing diet. The results indicated the growth promoting activity of SBA in culture of pearl gentian grouper, as well as the effect of SBA in strengthening the immunity. These beneficial effects of SBA feeding can increase the total yield of pearl gentian grouper in aquaculture. Thus, the re-cycle of waste products during the farming of S. baicalensis herb in serving as fish feeding should be encouraged.


Asunto(s)
Lubina , Alimentación Animal/análisis , Animales , Citocinas/genética , Suplementos Dietéticos/análisis , Componentes Aéreos de las Plantas , Scutellaria baicalensis
3.
Food Sci Nutr ; 9(9): 4827-4838, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34531995

RESUMEN

The root of Scutellaria baicalensis (Scutellaria Radix) has been used as herbal medicine for years, while its stem and leaf (aerial part) are considered as waste. The water extract from the aerial part of S. baicalensis (named as SBA) being included in the feeding of Siganus fuscescens (grey rabbit fish) has been shown to replace antibiotics in aquaculture with excellent outcome. To strengthen the usage of SBA in fish feeding, the total fish output and its nutritive value were determined here. Feeding the fishes with different doses of SBA for a month, the body length and weight were significantly increased after intake of standard feed containing 1% SBA. In parallel, the expressions of alkaline phosphatase and growth-related factors in bone, liver, and muscle of 1% SBA-fed fishes were markedly increased, suggesting the beneficial effects of SBA. The composition of amino acid and fatty acid in fish muscle, after intaking 1% SBA-containing feed, was altered. In SBA-fed fish muscle, the amounts of threonine and methionine were increased, while the amount of leucine was decreased, as compared with control group. The amounts of fatty acids, including docosahexaenoic acid, phosphatidylcholine, and phosphatidylethanolamine, were increased in the 1% SBA-fed fish, while the amounts of triglycerides were decreased. The results indicated the growth-promoting activity of SBA in an in vivo culture of S. fuscescens, as well as to increase the nutritive values of the muscle. Thus, the re-cycle of waste products during the farming of S. baicalensis herb in serving as fish feeding should be encouraged.

4.
Fish Shellfish Immunol Rep ; 2: 100036, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36420515

RESUMEN

A new cell line was isolated and characterized from the head kidney of Siganus fuscescens (rabbit fish). The new macrophagic-like cell line was named as rabbit fish macrophage (RFM), and which could be sub-cultured for over 50 cycles since the development. RFM cell line was tested for growth in different temperatures and serum concentrations: the best growing condition was optimized at 20% serum under 28 °C. In cultured RFM cells, sequencing of 18S rRNA, as well as immunostaining of cytokeratin and CD 68, confirmed the identity as macrophagic cell of S. fuscescens. Cultured RFM cells were exposed to challenge of inflammation, as triggered by LPS, showing highly sensitive responses to inflammation, including release of nitric oxide, expression of cytokine, and activation of phagocytosis. The water extract of aerial part of Scutellaria baicalensis, named as SBA, has been shown anti-inflammatory property in S. fuscescens fish. In order to extend the application of SBA in aquaculture, the extract and its effective flavonoids, i.e. baicalin and scutellarin, were applied in LPS-treated RFM cells. Application of SBA extract, baicalin or scutellarin, inhibited the expressions of LPS-induced inflammatory cytokines, i.e. IL-1ß, TNF-α, as well as the signaling of transcription factor NF-κB. The results support the established RFM cell line could be an ideal in vitro model in drug screening relating to inflammation. Additionally, the notion of SBA herbal extract in fish aquaculture is supported by its efficacy against inflammation.

5.
Phytomedicine ; 80: 153400, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33157413

RESUMEN

BACKGROUND: Vascular Endothelial Growth Factors (VEGFs) are a group of growth factor in regulating development and maintenance of blood capillary. The VEGF family members include VEGF-A, placenta growth factor (PGF), VEGF-B, VEGF-C and VEGF-D. VEGF receptor activation leads to multiple complex signaling pathways, particularly in inducing angiogenesis. Besides, VEGF is produced by macrophages and T cells, which is playing roles in inflammation. In macrophages, VEGF receptor-3 (VEGFR-3) and its ligand VEGF-C are known to attenuate the release of pro-inflammatory cytokines. METHODS: Immunoprecipitation and molecular docking assays showed the binding interaction of kaempferol-3-O-rutinoside and VEGF-C. Western blotting and qRT-PCR methods were applied to explore the potentiating effect of kaempferol-3-O-rutinoside in VEGF-C-mediated expressions of proteins and genes in endothelial cells and LPS-induced macrophages. Enzyme-linked immunosorbent assay (ELISA) was employed to reveal the release of proinflammatory cytokines in LPS-induced macrophages. Immunofluorescence assay was performed to determine the effect of kaempferol-3-O-rutinoside in regulating nuclear translocation of NF-κB p65 subunit in the VEGF-C-treated cultures. In addition, Transwell® motility assay was applied to detect the ability of cell migration after drug treatment in LPS-induced macrophages. RESULTS: We identified kaempferol-3-O-rutinoside, a flavonoid commonly found in vegetable and fruit, was able to act on cultured macrophages in inhibiting inflammatory response, and the inhibition was mediated by its specific binding to VEGF-C. The kaempferol-3-O-rutinoside-bound VEGF-C showed high potency to trigger the receptor activation. In LPS-treated cultured macrophages, applied kaempferol-3-O-rutinoside potentiated inhibitory effects of exogenous applied VEGF-C on the secretions of pro-inflammatory cytokines, i.e. IL-6 and TNF-α, as well as expressions of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). This inhibition was in parallel to transcription and translocation of NF-κB. Moreover, the binding of kaempferol-3-O-rutinoside with VEGF-C suppressed the LPS-induced migration of macrophage. CONCLUSION: Taken together, our results suggested the pharmacological roles of kaempferol-3-O-rutinoside in VEGF-C-mediated anti-inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Quempferoles/metabolismo , Quempferoles/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Quempferoles/química , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7
6.
Molecules ; 25(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824997

RESUMEN

Piceatannol is also named as trans-3,4,3',5'-tetrahydroxy-stilbene, which is a natural analog of resveratrol and a polyphenol existing in red wine, grape and sugar cane. Piceatannol has been proved to possess activities of immunomodulatory, anti-inflammatory, antiproliferative and anticancer. However, the effect of piceatannol on VEGF-mediated angiogenesis is not known. Here, the inhibitory effects of piceatannol on VEGF-induced angiogenesis were tested both in vitro and in vivo models of angiogenesis. In human umbilical vein endothelial cells (HUVECs), piceatannol markedly reduced the VEGF-induced cell proliferation, migration, invasion, as well as tube formation without affecting cell viability. Furthermore, piceatannol significantly inhibited the formation of subintestinal vessel in zebrafish embryos in vivo. In addition, we identified the underlying mechanism of piceatannol in triggering the anti-angiogenic functions. Piceatannol was proposed to bind with VEGF, thus attenuating VEGF in activating VEGF receptor and blocking VEGF-mediated downstream signaling, including expressions of phosphorylated eNOS, Erk and Akt. Furthermore, piceatannol visibly suppressed ROS formation, as triggered by VEGF. Moreover, we further determined the outcome of piceatannol binding to VEGF in cancer cells: piceatannol significantly suppressed VEGF-induced colon cancer proliferation and migration. Thus, these lines of evidence supported the conclusion that piceatannol could down regulate the VEGF-mediated angiogenic functions with no cytotoxicity via decreasing the amount of VEGF binding to its receptors, thus affecting the related downstream signaling. Piceatannol may be developed into therapeutic agents or health products to reduce the high incidence of angiogenesis-related diseases.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Estilbenos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Fosforilación , Unión Proteica , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Pez Cebra
7.
Fish Shellfish Immunol ; 106: 71-78, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32738512

RESUMEN

A new cell line derived from dorsal fin of rabbit fish Siganus fuscescens was developed and characterized. The cell line was isolated from the dorsal fin, named as rabbit fish fin (RFF) cell line, and which was sub-cultured for 50 cycles since the development. This cell line was tested for growth in different temperatures and serum concentrations, and the best growing condition was at 20% serum at 28 °C. In cultured RFF cells, amplification of 18S rRNA from genomic DNA and immunostaining of cellular cytokeratin confirmed the proper identity of S. fuscescens fish. After 30th passage of cultures, the cells were exposed to challenge of inflammation, triggered by LPS, and hypoxia, mimicked by CoCl2. Cultured RFF cells showed robust sensitive responses to inflammation and hypoxia in directing the expressions of cytokines and hypoxia inducible factor-1α (HIF-1α). The water extract of aerial part of Scutellaria baicalensis (SBA) has been shown in rabbit fish to prevent inflammation. Here, we extended this notion of testing the efficacy of SBA extract in the developed cultured RFF cells. Application of SBA extract inhibited the expression of LPS-induced inflammatory cytokines, i.e. IL-1ß, IL-6, as well as the signaling of NF-κB. The application of CoCl2 in cultured RFF cells triggered the hypoxia-induced cell death and up regulation of HIF-1α. As expected, applied SBA extract in the cultures prevented the hypoxia-induced signaling. Our results show the established RFF cell line may be served as an ideal in vitro model in drug screening relating to inflammation and hypoxia. Additionally, we are supporting the usage of SBA herbal extract in fish aquaculture, which possesses efficacy against inflammation and hypoxia.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades de los Peces/inmunología , Perciformes/inmunología , Extractos Vegetales/farmacología , Animales , Línea Celular , Hipoxia/inmunología , Hipoxia/veterinaria , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Inflamación/inmunología , Inflamación/veterinaria , FN-kappa B/inmunología , Scutellaria baicalensis , Transducción de Señal/efectos de los fármacos
8.
Front Pharmacol ; 11: 526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410995

RESUMEN

Kaempferol is a major flavonoid in Ginkgo Folium and other edible plants, which is being proposed here to have roles in angiogenesis. Angiogenesis is important in both physiological and pathological development. Here, kaempferol was shown to bind with vascular endothelial growth factor (VEGF), probably in the heparin binding domain of VEGF: this binding potentiated the angiogenic functions of VEGF in various culture models. Kaempferol potentiated the VEGF-induced cell motility in human umbilical vein endothelial cells (HUVECs), as well as the sub-intestinal vessel sprouting in zebrafish embryos and formation of microvascular in rat aortic ring. In cultured HUVECs, application of kaempferol strongly potentiated the VEGF-induced phosphorylations of VEGFR2, endothelial nitric oxide synthase (eNOS) and extracellular signal-regulated kinase (Erk) in time-dependent and concentration-dependent manners, and in parallel the VEGF-mediated expressions of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were significantly enhanced. In addition, the potentiation effect of kaempferol was revealed in VEGF-induced migration of skin cell and monocyte. Taken together, our results suggested the pharmacological roles of kaempferol in potentiating VEGF-mediated functions should be considered.

9.
Phytomedicine ; 74: 152815, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30833146

RESUMEN

BACKGROUND: According to traditional Chinese medicine (TCM) theory, the herbal property is the most important guiding principle of ancient medication in China. The classification of warm- and cold-stimulating TCM is defined mainly based on the effects of herbs in regulating body temperature; however, the underlying mechanism of such distinction has not been fully identified. METHODS: Here, four commonly used spleen-meridian herbs, Ginseng Radix and Astragali Radix as typical warm-stimulating herbs, and Nelumbinis Semen and Coicis Semen as typical cold-stimulating herbs, were selected to test their effects in regulating body temperature, as well as its triggered thermo-regulatory factors and energy related metabolites, in yeast-induced fever rats. RESULTS: The intake of Astragali Radix increased body temperature in yeast-induced fever rats; while Coicis Semen showed cooling effects in such rats. In parallel, the levels of cAMP, PGE2 and thermo-related metabolites, including choline, creatine, alanine, lactate and leucine, in the blood of yeast-induced rats were increased significantly by the intake of Astragali Radix. Oppositely, the cold-stimulating herbs, Nelumbinis Semen and Coicis Semen, showed cooling effects by increasing certain metabolites, e.g. histidine, tyrosine, lipid, myo-inositol, as well as AVP level. CONCLUSION: Here, we compared different effects of warm and cooling spleen-meridian herbs in the regulation of body temperature. By providing an intuitive comparison of thermo-regulatory factors and related metabolites after intake of selected herbs, the mechanism behind the warm and cooling effects of specific herbs were revealed.


Asunto(s)
Regulación de la Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Animales , Astragalus propinquus , Coix/química , Medicamentos Herbarios Chinos/química , Fiebre/tratamiento farmacológico , Fiebre/etiología , Masculino , Medicina Tradicional China/métodos , Meridianos , Panax/química , Plantas Medicinales/química , Ratas Endogámicas , Bazo , Levaduras/patogenicidad
10.
J Agric Food Chem ; 67(4): 1127-1137, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30525561

RESUMEN

Resveratrol is a polyphenol commonly found in plants and food health products, such as grape and red wine, and was identified for its binding to vascular endothelial growth factor (VEGF) by using HerboChips screening. The binding, therefore, resulted in alterations of VEGF binding to its receptor and revealed the roles of VEGF in angiogenesis. Several lines of evidence gave support to the inhibitory activities of resveratrol in VEGF-triggered angiogenesis. In human umbilical vein endothelial cells (HUVECs), compared with a VEGF-induced group, resveratrol, at a high concentration, suppressed VEGF-mediated endothelial cell proliferation, cell migration, cell invasion, and tube formation by 80 ± 9.01%, 140 ± 3.78%, 110 ± 7.51%, and 120 ± 10.26%, respectively. Moreover, resveratrol inhibited the subintestinal vessel formation in zebrafish embryo. In signaling cascades, application of resveratrol in HUVECs reduced the VEGF-triggered VEGF receptor 2 phosphorylation and c-Jun N-terminal kinase phosphorylation. Moreover, the VEGF-mediated phosphorylations of endothelial nitric oxide synthase, protein kinase B, and extracellular signal-regulated kinase were obviously decreased by (3 ± 0.37)-, (2 ± 0.27)- and (6 ± 0.23)-fold, respectively, in the presence of resveratrol at high concentration. Parallelly, the VEGF-induced reactive oxygen species formation was significantly decreased by 50 ± 7.88% to 120 ± 14.82% under resveratrol treatment. Thus, our results provided support to the antiangiogenic roles of resveratrol, as well as its related signaling mechanisms, in attenuating the VEGF-mediated responses. The present results supported possible development of resveratrol, which should be considered as a therapeutic agent in terms of prevention and clinical treatment of diseases related to angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Resveratrol/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Receptores de Factores de Crecimiento Endotelial Vascular/química , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Resveratrol/química , Resveratrol/farmacología , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/química , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA