Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155594, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614040

RESUMEN

BACKGROUND: The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms. PURPOSE: The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization. METHODS: The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells. RESULTS: Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 µM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression. CONCLUSION: In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.


Asunto(s)
Medicamentos Herbarios Chinos , Microglía , Neuralgia , Niacinamida , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Masculino , Medicamentos Herbarios Chinos/farmacología , Ratones , Niacinamida/farmacología , Ratones Endogámicos C57BL , Intestinos/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Analgésicos/farmacología , Modelos Animales de Enfermedad
2.
Chem Biodivers ; 21(4): e202301736, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451006

RESUMEN

In recent years, the research of mitochondrial dysfunction in depression has drawn the focus of researchers. Our research group previously found that Xiaoyao San (XYS) has improved the mitochondrial structure and the blocked tricarboxylic acid cycle (TCA cycle) in the hippocampal tissue of chronic unpredictable mild stress (CUMS) rats. However, the specific targets and active components of XYS remain unclear, and the potential to improve hippocampal mitochondrial TCA cycle disorder was also unexplored. In this research, a strategy to combine stable isotope-resolved metabolomics (SIRM), network pharmacology and transmission electron microscopy (TEM) was used to explore the potential, targets of action, and active components of XYS to improve hippocampal mitochondrial TCA cycle disorder of CUMS rats. The results of TEM showed that the ultrastructure of hippocampal mitochondria could be improved by XYS. A combination of SIRM and molecular docking showed that pyruvate carboxylase (PC), ATP citrate lyase (ACLK), glutamate dehydrogenase (GLDH), glutamate oxaloacetate transaminase (GOT) and pyruvate dehydrogenase (PDH) were targets of XYS to improve TCA cycle disorder. In addition, troxerutin was found to be the most potential active component of XYS to improve TCA cycle disorder. The above research results can provide new insights for the development of antidepressant drugs.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Ratas , Animales , Simulación del Acoplamiento Molecular , Antidepresivos/farmacología , Medicamentos Herbarios Chinos/farmacología
3.
J Pharm Biomed Anal ; 242: 116067, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417324

RESUMEN

Radix Astragali (Huangqi in Chinese, HQ) is a commonly used Chinese herbal medicine for thousands of years. In this study, A classic prescription Huangqi Jianzhong tang (HQJZ) was selected to evaluate the important effect of HQ on rats with chronic atrophic gastritis (CAG) from the perspective of intestinal flora in cecal contents samples. Traditional pharmacological indicators, including weight change, pathological examination and biochemical indicators showed that HQ exerted favorable contribution to HQJZ against CAG, where the efficiencies of HQ and HQJZ were better than HY (HQJZ prepared without HQ). An accurate strategy was adopted to screen out the differential metabolites in the metabolomis analysis of intestinal flora in cecal contents samples based on the optimal screening factors, including VIP (importance of variables in projection), FC (fold change), AUROC (area under the receiver operating characteristic curve) and -ln(p-value), which were evaluated based on their interpreting, grouping, and predicting abilities of the performed orthogonal partial least-squares-discriminate analysis (OPLS-DA) models. Ten altered differential metabolites were obtained and associated with the intestinal flora, which HQ exerted the important metabolic contributions to HQJZ. The efficacy on the diversity of intestinal flora and their correlations with the altered metabolites further showed the important role of HQ in HQJZ composition. This work provided valuable approach for looking for potential biomarkers associated with metabolomics research with more accuracy, and provided new insights into the mechanisms to explain the efficacy of HQ contributing to HQJZ formula.


Asunto(s)
Medicamentos Herbarios Chinos , Gastritis Atrófica , Microbioma Gastrointestinal , Ratas , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Gastritis Atrófica/tratamiento farmacológico , Gastritis Atrófica/metabolismo , Astragalus propinquus
4.
Chin Herb Med ; 16(1): 132-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375048

RESUMEN

Objective: This study aimed to investigate the therapeutic effects of Xiaoyao San (XYS), a herbal medicine formula, on exercise capacity and liver mitochondrial metabolomics in a rat model of depression induced by chronic unpredictable mild stress (CUMS). Methods: A total of 24 male SD rats were randomly divided into four groups: control group (C), CUMS control group (M), Venlafaxine positive treatment group (V), and XYS treatment group (X). Depressive behaviour and exercise capacity of rats were assessed by body weight, sugar-water preference test, open field test, pole test, and rotarod test. The liver mitochondria metabolomics were analyzed by using liquid chromatography-mass spectrometry (LC-MS) method. TCMSP database and GeneCards database were used to screen XYS for potential targets for depression, and GO and KEGG enrichment analyses were performed. Results: Compared with C group, rats in M group showed significantly lower body weight, sugar water preference rate, number of crossing and rearing in the open field test, climbing down time in the pole test, and retention time on the rotarod test (P < 0.01). The above behaviors and exercise capacity indices were significantly modulated in rats in V and X groups compared with M group (P < 0.05, 0.01). Compared with C group, a total of 18 different metabolites were changed in the liver mitochondria of rats in M group. Nine different metabolites and six metabolic pathways were regulated in the liver mitochondria of rats in X group compared with M group. The results of network pharmacology showed that 88 intersecting targets for depression and XYS were obtained, among which 15 key targets such as IL-1ß, IL-6, and TNF were predicted to be the main differential targets for the treatment of depression. Additionally, a total of 1 553 GO signaling pathways and 181 KEGG signaling pathways were identified, and the main biological pathways were AGE-RAGE signaling pathway, HIF-1 signaling pathway, and calcium signaling pathway. Conclusion: XYS treatment could improve depressive symptoms, enhance exercise capacity, positively regulate the changes of mitochondrial metabolites and improve energy metabolism in the liver of depressed rats. These findings suggest that XYS exerts antidepressant effects through multi-target and multi-pathway.

5.
J Med Food ; 27(1): 22-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236693

RESUMEN

Astragali Radix (AR) or its extract has been used as an herbal medicine and dietary supplement in China, Europe, and the United States. The gut microbiota could provide new insights for exploring dietary supplements' underlying mechanism on organisms. However, no reports have focused on the regulatory effect of AR on the gut microbiota as a dietary supplement. In this study, healthy ICR mice of either sex were divided into AR and control (CON) groups and given AR water extract (4.55 mg/kg·day-1) or saline by gavage for 14 days, respectively. Then 16S rRNA gene sequencing and ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry-based fecal metabolomics were integrated to investigate the benefits of dietary AR. Weighted gene coexpression network analysis was also introduced to investigate the metabolites with highly synergistic changes. AR supplementation influenced the structure of intestinal microflora, especially enriching short-chain fatty acid-producing bacteria g_Coprobacillus, g_Prevotella, and g_Parabacteroides. AR also significantly altered the fecal metabolome, mainly related to amino acid metabolism, nucleotide metabolism, and bile acid (BA) metabolism. Moreover, the increased secondary BAs and BA-sulfates might closely relate to intestinal microflora. These findings provide valuable insights for future research of dietary AR as a functional food.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , ARN Ribosómico 16S/genética , Ratones Endogámicos ICR , Metabolómica/métodos , Metaboloma
6.
J Chromatogr A ; 1709: 464381, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37722174

RESUMEN

Radix Astragali (RA) is one of the most frequently used traditional Chinese medicine (TCM) in China, and honey-processed RA (HRA) is its common processing product. Thus far, their comprehensive chemical differences are not well understood. In this work, an integrated approach using Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) combined with diagnostic ions, molecular network (MN) and chemometrics was established to profile their chemical characterizations and illustrate the chemical mechanism of RA processed with honey. A total of 226 compounds were tentatively identified including 50 flavonoid glycosides, 26 flavonoid aglycone, 56 saponins, 30 organic acids, 18 amino acids, 3 coumarins and 43 other compounds, of which 33 compounds were characterized according to MN. Their chemical differences were further investigated by integrating of multivariate statistical analysis, student's t-test analysis, linear regression analysis and MN. Consequently, multivariate statistical analysis showed that the raw and processed RA were different form each other. Besides, 33 different compounds were found to be significantly altered by student's t-test analysis. Apart from this, linear regression analysis indicated 42 and 120 compounds underwent the significant varieties. The potential chemical reactions induced by honey-processing, such as possible hydrolysis reactions and isomerization reactions, were speculated based on these variations coupled the areas changes of the nodes in MN. This study provided an efficient strategy to illustrate the chemical mechanism of TCM processing.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37475552

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) Xiaojianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained. OBJECTIVE: The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches. METHODS: Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, ΔLin_F9XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD). RESULTS: Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG. CONCLUSION: Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37515912

RESUMEN

Traditional Chinese medicine (TCM) is characterized by its multiple components. The utilization of mathematical statistical methods to integrate the pharmacokinetics of monomer components can provide a comprehensive understanding of the holistic pharmacokinetic process of TCM. Two distinct integrated methods, namely the correlation coefficient method and the AUC-based weight coefficient method, were employed in this study to elucidate and compare their differences in the integrated pharmacokinetic research of Fangji Huangqi decoction (FHD). FHD is commonly used in clinical practice to treat the nephrotic syndrome. Firstly, one-dose FHD was given to doxorubicin-induced nephropathy (DN) rats, and the prototype compounds of FHD and their metabolites in plasma were qualitatively and semi-quantitatively analyzed by UHPLC-MS/MS. Secondly, the efficacy of FHD was quantitatively characterized by the relative distance method based on metabolomics. The correlation coefficients were obtained by analyzing the correlation between efficacy (relative distance values) and the content of compound, and they were subsequently used for the model integration (correlation coefficient method). Thirdly, the effective compounds of FHD treating DN were screened by integrating network pharmacology and molecular docking, and they were used for another integrated pharmacokinetic model by AUD-based weight coefficient method. Finally, the 2 integrated methods and the 2 integrated pharmacokinetic models were compared. In this study, 30 prototype compounds and 41 metabolites of FHD in plasma were identified, and the pharmacokinetic curve of 18 prototype compounds were built. The efficacy of FHD in the treatment of DN has been relatively quantitation. The 2 established integrated pharmacokinetic models of FHD indicated that the correlation coefficient method was the optimal approach for conducting the integrated pharmacokinetic research on the TCM with unknown effective compounds, whereas the AUC-based coefficient method was suitable for the TCM with the clear effective compounds. The integrated pharmacokinetic models indicated that FHD had high bioavailability and an absorption peak at about 6 h after administration, indicating that the 6 h after administration was the critical period of FHD treating DN. This research would be helpful for the pharmacological and pharmacokinetic research of FHD, and provide a method reference for the integrated pharmacokinetic research of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Animales , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China/métodos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem/métodos
9.
Phytother Res ; 37(10): 4572-4586, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37318212

RESUMEN

Radix Bupleuri exerts effective hepatoprotective and cholagogic effects through its Saikosaponins (SSs) component. Therefore, we attempted to determine the mechanism of saikosaponins used to promote bile excretion by studying their effects on intrahepatic bile flow, focusing on the synthesis, transport, excretion, and metabolism of bile acids. C57BL/6N mice were continuously gavaged with saikosaponin a (SSa), saikosaponin b2 (SSb2 ), or saikosaponin D (SSd) (200 mg/kg) for 14 days. Liver and serum biochemical indices were determined using Enzyme-linked immunosorbent assay (ELISA) kits. In addition, an ultra-performance liquid chromatography-mass spectrometer (UPLC-MS) was used to measure the levels of the 16 bile acids in the liver, gallbladder, and cecal contents. Furthermore, SSs pharmacokinetics and docking between SSs and farnesoid X receptor (FXR)-related proteins were analyzed to investigate the underlying molecular mechanisms. Administration of SSs and Radix Bupleuri alcohol extract (ESS) did not cause significant changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST), or alkaline phosphatase (ALP) levels. Saikosaponin-regulated changes in bile acid (BA) levels in the liver, gallbladder, and cecum were closely related to genes involved in BA synthesis, transport, and excretion in the liver. Pharmacokinetic studies indicated that SSs were characterized by rapid elimination (t1/2 as 0.68-2.47 h), absorption (Tmax as 0.47-0.78 h), and double peaks in the drug-time curves of SSa and SSb2 . A molecular docking study revealed that SSa, SSb2 , and SSd docked well with the 16 protein FXR molecules and target genes (<-5.2 kcal/mol). Collectively, saikosaponins may maintain BA homeostasis in mice by regulating FXR-related genes and transporters in the liver and intestine.

10.
J Ethnopharmacol ; 317: 116762, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37301308

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG) is a perennial herb with anti-inflammatory, antibacterial, and antioxidant activities, which is traditionally used to treat inflammation of respiratory tract and gastrointestinal tract, abdominal cramps, bacterial and viral infections. Clinically, it is often used to treat inflammatory-related diseases. Research has shown that the ethanol extract of Scutellaria baicalensis Georgi (SGE) has anti-inflammatory effect, and its main components baicalin and baicalein have analgesic effects. However, the mechanism of SGE in relieving inflammatory pain has not been deeply studied. AIM OF THE STUDY: This study aimed to evaluate the analgesic effect of SGE on complete Freund's adjuvant (CFA)-induced inflammatory pain rats, and to investigate whether its effect on relieving inflammatory pain is associated with regulation of P2X3 receptor. MATERIALS AND METHODS: The analgesic effects of SGE on CFA-induced inflammatory pain rats were evaluated by measuring mechanical pain threshold, thermal pain threshold, and motor coordination ability. The mechanisms of SGE in relieving inflammatory pain were explored by detecting inflammatory factors levels, NF-κB, COX-2 and P2X3 expression, and were further verified by addition of P2X3 receptor agonist (α, ß me-ATP). RESULTS: Our results revealed that SGE can notably increase the mechanical pain threshold and thermal pain threshold of CFA-induced inflammatory pain rats, and markedly alleviate the pathological damage in DRG. SGE could suppress the release of inflammatory factors including IL-1ß, IL-6, TNF-α and restrain the expression of NF-κB, COX-2 and P2X3. Moreover, α, ß me-ATP further exacerbated the inflammatory pain of CFA-induced rats, while SGE could markedly raise the pain thresholds and relieve inflammatory pain. SGE could attenuate the pathological damage, inhibit P2X3 expression, inhibit the elevation of inflammatory factors caused by α, ß me-ATP. SGE can also inhibit NF-κB and ERK1/2 activation caused by α, ß me-ATP, and inhibit the mRNA expression of P2X3, COX-2, NF-κB, IL-1ß, IL-6 and TNF-α in DRG of rats induced by CFA coupled with α, ß me-ATP. CONCLUSIONS: In summary, our research indicated that SGE could alleviate CFA-induced inflammatory pain by suppression of P2X3 receptor.


Asunto(s)
FN-kappa B , Receptores Purinérgicos P2X3 , Ratas , Animales , Adyuvante de Freund , FN-kappa B/metabolismo , Etanol/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Scutellaria baicalensis , Ciclooxigenasa 2/metabolismo , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/metabolismo , Antiinflamatorios/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Analgésicos/efectos adversos , Adenosina Trifosfato
11.
J Pharm Pharmacol ; 75(9): 1212-1224, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329511

RESUMEN

OBJECTIVES: Scutellaria baicalensis leaf (SLE), the above-ground part of the traditional Chinese medicine Scutellaria baicalensis Georgi, is rich in resources and contains a large number of flavonoids with anti-inflammatory, antioxidant and neuroprotective functions. The present study evaluated the ameliorative effects and related mechanisms of SLE on d-gal-induced ageing rats, providing a theoretical basis for the exploitation of SLE. METHODS: This experiment investigated the mechanism of SLE for anti-ageing by non-targeted metabonomics technology combined with targeted quantitative analysis and molecular biology technology. KEY FINDINGS: Non-targeted metabonomics analysis showed that 39 different metabolites were screened out. Among them, 38 metabolites were regulated by SLE (0.4 g/kg), and 33 metabolites were regulated by SLE (0.8 g/kg). Through enrichment analysis, glutamine-glutamate metabolic pathway was identified as the key metabolic pathway. Subsequently, the results of targeted quantitative and biochemical analysis displayed that the contents of key metabolites and the activities of enzymes in glutamine-glutamate metabolic pathway and glutathione synthesis could be regulated by SLE. Furthermore, the results of Western blotting indicated that SLE significantly modulated the expression of Nrf2, GCLC, GCLM, HO-1, and NQO1 proteins. CONCLUSION: To sum up, the anti-ageing mechanism of SLE was related to glutamine-glutamate metabolism pathway and Nrf2 signalling pathway.


Asunto(s)
Glutamina , Scutellaria baicalensis , Ratas , Animales , Scutellaria baicalensis/química , Glutamina/metabolismo , Ácido Glutámico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hígado , Envejecimiento/metabolismo , Hojas de la Planta , Glutatión/metabolismo
12.
Heliyon ; 9(5): e15602, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206044

RESUMEN

Shengjiang Xiexin Decoction (SXD) is a widely recognized formula in Traditional Chinese Medicine (TCM) for treating diarrhea and is commonly used in clinical practice. Clostridium difficile infection (CDI) is a type of antibiotic-associated diarrhea with a rising incidence rate that has severe consequences for humans. Recent clinical applications have found significant efficacy in using SXD as an adjunct to CDI treatment. However, the pharmacodynamic substance basis and therapeutic mechanism of SXD remain unclear. This study aimed to systematically analyze the metabolic mechanisms and key pharmacodynamic components of SXD in CDI mice by combining non-targeted metabolomics of Chinese medicine and serum medicinal chemistry. We established a CDI mouse model to observe the therapeutic effect of SXD on CDI. We investigated the mechanism of action and active substance composition of SXD against CDI by analyzing 16S rDNA gut microbiota, untargeted serum metabolomics, and serum pharmacochemistry. We also constructed a multi-scale, multifactorial network for overall visualization and analysis. Our results showed that SXD significantly reduced fecal toxin levels and attenuated colonic injury in CDI model mice. Additionally, SXD partially restored CDI-induced gut microbiota composition. Non-targeted serum metabolomics studies showed that SXD not only regulated Taurine and hypotaurine metabolism but also metabolic energy and amino acid pathways such as Ascorbate and aldarate metabolism, Glycerolipid metabolism, Pentose and glucuronate interconversions, as well as body and other metabolite production in the host. Through the implementation of network analysis methodologies, we have discerned that Panaxadiol, Methoxylutcolin, Ginsenoside-Rf, Suffruticoside A, and 10 other components serve as critical potential pharmacodynamic substance bases of SXD for CDI. This study reveals the metabolic mechanism and active substance components of SXD for the treatment of CDI mice using phenotypic information, gut microbiome, herbal metabolomics, and serum pharmacochemistry. It provides a theoretical basis for SXD quality control studies.

13.
Phytomedicine ; 115: 154853, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37156059

RESUMEN

BACKGROUND: Suanzaoren decoction (SZRD) is a classical traditional Chinese prescription. It is widely used to treat mental disorders, including insomnia, anxiety, and depression, in China and other Asian countries. However, the effective components and mechanisms underlying SZRD remained unclear. PURPOSE: We aimed to develop a new strategy to discover the effects and potential mechanisms of SZRD against anxiety and to further reveal the effective components of SZRD in treating anxiety. STUDY DESIGN AND METHODS: First, the chronic restraint stress (CRS)-induced mouse model of anxiety was orally administered SZRD, and behavioral indicators and biochemical parameters were applied to assess efficacy. A chinmedomics strategy based on UHPLC-Q-TOF-MS technology and network pharmacology were then used to screen and explore potentially effective components and therapeutic mechanisms. Finally, molecular docking was applied to further confirm the effective components of SZRD, and a multivariate network for anxiolytic effects was constructed. RESULTS: SZRD exerted anxiolytic effects by increasing the percentage of entries into open arms and the time spent in open arms; improving hippocampal 5-HT, GABA, and NE levels; and increasing serum corticosterone (CORT) and corticotropin-releasing hormone (CRH) levels caused by CRS challenge. Beside, SZRD exerted a sedative effect by decreasing sleep time and prolonging sleep latency with no muscle relaxation effect in CRS mice. A total of 110 components were identified in SZRD, 20 of which were absorbed in the blood. Twenty-one serum biomarkers involved in arachidonic acid, tryptophan, sphingolipid, and linoleic acid metabolism were identified after SZRD intervention. Finally, a multivariate network including prescription-effective components-targets-pathway of SZRD treating anxiety, including 11 effective components, 4 targets and 2 pathway was constructed. CONCLUSION: The current study demonstrated that integrating chinmedomics and network pharmacology was a powerful approach to investigating the effective components and therapeutic mechanisms of SZRD and provided a solid basis for the quality marker (Q-marker) of SZRD.


Asunto(s)
Ansiolíticos , Medicamentos Herbarios Chinos , Ratones , Animales , Ansiolíticos/farmacología , Farmacología en Red , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/química , Ansiedad/tratamiento farmacológico
14.
Exp Gerontol ; 178: 112216, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211069

RESUMEN

BACKGROUND: Functional constipation is a common gastrointestinal disorder especially severely affecting the life quality of the aged. Jichuanjian (JCJ) has been widely used for aged functional constipation (AFC) in clinic. Yet, the mechanisms of JCJ merely scratch the surface with being studied at a single level, rather than from a systematic perspective of the whole. AIM: The purpose of this study was to explore the underlying mechanisms of JCJ in treating AFC from the perspectives of fecal metabolites and related pathways, gut microbiota, key gene targets and functional pathways, as well as "behaviors-microbiota-metabolites" relationships. METHODS: 16S rRNA analysis and fecal metabolomics combined with network pharmacology were applied to investigate the abnormal performances of AFC rats, as well as the regulatory effects of JCJ. RESULTS: JCJ significantly regulated the abnormalities of rats' behaviors, the microbial richness, and the metabolite profiles that were interrupted by AFC. 19 metabolites were found to be significantly associated with AFC involving in 15 metabolic pathways. Delightfully, JCJ significantly regulated 9 metabolites and 6 metabolic pathways. AFC significantly interrupted the levels of 4 differential bacteria while JCJ significantly regulated the level of SMB53. HSP90AA1 and TP53 were the key genes, and pathways in cancer was the most relevant signaling pathways involving in the mechanisms of JCJ. CONCLUSION: The current findings not only reveal that the occurrence of AFC is closely related to gut microbiota mediating amino acid and energy metabolism, but also demonstrate the effects and the underlying mechanisms of JCJ on AFC.


Asunto(s)
Estreñimiento , Medicamentos Herbarios Chinos , Heces , Animales , Ratas , Microbioma Gastrointestinal , Metabolómica , Metaboloma , Heces/microbiología , Medicamentos Herbarios Chinos/farmacología , Estreñimiento/tratamiento farmacológico , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Farmacología en Red
15.
Toxicol Res (Camb) ; 12(2): 201-215, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37125330

RESUMEN

Introduction: Qishenbuqi capsule (QSBQC), a listed Chinese patent prescription, comprises of 4 herbs. Clinically, it has been shown to improve immune functions. Methods: Subjects with Qi deficiency and non-Qi deficiency were recruited, who then took QSBQC for 4 weeks. Traditional Chinese medicine (TCM) syndrome scores and the levels of white blood cells, CD3+ T cells (CD3+), CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), and CD4+/CD8+ were determined. Serum metabolomics was used to explore the metabolic mechanisms of QSBQC on improving immunity. Meanwhile, the potential active ingredients, targets, and pathways of QSBQC on enhancing immunity were screened by network pharmacology. Results: QSBQC significantly improved TCM syndrome scores and increased the number of CD8+ T cells of both Qi deficiency and non-Qi deficiency subjects. Serum metabolomics revealed that QSBQC regulated 18 differential metabolites and 8 metabolic pathways of Qi deficiency, and 12 differential metabolites and 7 metabolic pathways of non-Qi deficiency subjects. The "herbs-compounds-pathways" diagram showed that PQ-2, cimifugin, and divaricatol were the main active components. Pathways in cancer and arginine and proline metabolism could be the most important pathways. Conclusion: Our research revealed the immunoenhancing mechanisms of QSBQC and improved the combination of TCM theory and modern western medicine theory.

16.
Chin J Nat Med ; 21(3): 197-213, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37003642

RESUMEN

Angelicae Sinensis Radix (AS) is reproted to exert anti-depression effect (ADE) and nourishing blood effect (NBE) in a rat model of depression. The correlation between the two therapeutic effects and its underlying mechanisms deserves further study. The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics, network pharmacology and molecular docking. According to metabolomics analysis, 30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression. Furthermore, principal component analysis and correlation analysis showed that glutathione, sphinganine, and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators, indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS. Then, a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis, where a total of 107 pathways were collected. Moreover, 37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer (UPLC-Triple-TOF/MS) in AS extract that passed the filtering criteria were used for network pharmacology, where 46 targets were associated with the ADE and NBE of AS. Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS. Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins (PIK3CA and PIK3CD) in sphingolipid metabolism. Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism. Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Ratas , Animales , Ratas Sprague-Dawley , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/química , Metabolómica/métodos , Espectrometría de Masas
17.
Biomed Chromatogr ; 37(8): e5640, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37013366

RESUMEN

Danggui Buxue decoction (DBD), a classic prescription of traditional Chinese medicine (TCM) for invigorating qi and generating blood, contains honey-processed Astragali Radix (HAR) and wine-processed Angelicae Sinensis Radix (WDG) in its original prescription. In this study, the compositions of DBD, WDG, and HAR were characterized using ultra-high-performance liquid chromatography coupled with the quadrupole-time-of-flight tandem mass spectrometry technique in combination with molecular network and diagnostic ion strategies. Finally, 200 compounds were identified in DBD, 114 compounds were identified in WDG, and 180 compounds were identified in HAR; there were 48 common compounds in total. The results demonstrated that compatibility led to changes in the chemical composition of TCM, and the qualitative method used in this study provided an effective data processing strategy for the characterization of components and the database for the study of the compounding mechanism of TCM.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Planta del Astrágalo/química , Medicina Tradicional China , Espectrometría de Masas en Tándem
18.
J Sep Sci ; 46(11): e2200985, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36965089

RESUMEN

Astragali Radix is widely used because of its dual use in medicine and food, and its quality evaluation is of great importance. In this study, a pseudo-targeted metabolomics approach based on scheduled multiple reaction monitoring was developed, and a total of 114 compounds with good linearity, sensitivity, and reproducibility were selected for relative quantification, and the chemical differences between Astragali Radix of different growth patterns were further compared by chemometric analysis. With the help of multivariate and univariate analysis, 26 differential compounds between wild/semi-wild Astragali Radix and cultivated Astragali Radix were determined. Then five marker compounds were screened out by lasso regression, and further verified by systematic clustering, random forest, support vector machine, and logistic regression. In addition, malonyl-substituted flavonoids showed relatively higher content in wild/semi-wild Astragali Radix. Thus, the malonyl substitution was characteristic for flavonoids in wild/semi-wild Astragali Radix. In conclusion, the application of pseudo-targeted metabolomics and various statistical methods could offer multi-dimensional information for the holistic quality evaluation of Astragali Radix.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Astragalus propinquus/química , Quimiometría , Medicamentos Herbarios Chinos/química , Reproducibilidad de los Resultados , Planta del Astrágalo/química , Metabolómica/métodos , Flavonoides/análisis
19.
Phytomedicine ; 111: 154628, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731299

RESUMEN

BACKGROUND: Depression affects not only the central nervous system, but also the peripheral system. Xiaoyaosan (XYS), a classical traditional Chinese medicine (TCM) prescription, exhibits definite anti-depression effects demonstrated both clinically and experimentally. However, its compatibility has not been entirely revealed due partly to the complex compositions of herbs contained. AIM: Based on the strategy of "Efficacy Group", this study aimed to reveal the compatibility of XYS from the perspective of "gut-liver-kidney" axis. METHODS: Firstly, XYS was divided into two efficacy groups, i.e. Shugan (SG) and Jianpi (JP) groups. Classic behaviors of rats were measured to confirm the anti-depression effects of XYS and its two efficacy groups. On top of this, gut microbiota analysis and kidney metabolomics were performed by 16S rRNA sequencing and 1H NMR, respectively. RESULTS: We found that XYS and its efficacy groups significantly regulated the abnormalities of behaviors and kidney metabolism of depressed rats, as well as intestinal disorders, but to different degrees. The regulatory effects of XYS and its efficacy groups on behaviors and kidney metabolomics of depressed rats had the same order, i.e. XYS > SG > JP, while the order of regulating gut microbiota was XYS > JP > SG. Both XYS and its efficacy groups significantly ameliorated gut microbiota disturbed, especially significant modulation of Peptostreptococcaceae. XYS significantly regulated nine kidney metabolites, while SG and JP regulated four and five differential metabolites, respectively, indicating that the two efficacy groups synergistically exhibited anti-depression effects, consequently contributing to the overall anti-depression effects of XYS. CONCLUSION: The current findings not only innovatively demonstrate the anti-depression effects and compatibility of XYS from the perspective of "gut-liver-kidney" axis, comprehensively using "Efficacy Group" strategy, macro behavioristics, metabolome and microbiome, and also provide a new perspective, strategy, and methodology for studying complex diseases and the compatibility of TCMs.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ratas , Animales , Antidepresivos/farmacología , ARN Ribosómico 16S , Medicamentos Herbarios Chinos/farmacología , Hígado , Metabolómica/métodos
20.
Phytomedicine ; 109: 154557, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610165

RESUMEN

BACKGROUND: As a classical traditional Chinese medicine (TCM), Xiaojianzhong Tang (XJZ) is effective in treating chronic atrophic gastritis (CAG). However, the pharmacological mechanism of XJZ has not been fully explained. PURPOSE: The purpose of this study was to investigate the mechanism of XJZ against CAG rats via gut microbiome using a multi-omics approach. METHODS: The rat cecal contents were analyzed through the integration of an untargeted metabolomic approach based on ultra-high performance liquid chromatography coupled with the quadrupole-time of flight mass spectrometry (UHPLC-QTOF-MS) and 16S rRNA gene sequencing. Finally, the interaction of differential metabolites with bile acid (BA)-related targets was verified by molecular docking. RESULTS: A new strategy was adopted to screen out the differential metabolites based on the comprehensive evaluation of VIP, |log2(FC)|, -ln(p-value) and ǀp(corr)ǀ. As results, XJZ showed favor regulations on the screened metabolites, cholic acid, deoxycholic acid, glycoursodeoxycholic acid, taurochenodesoxycholic acid, docosahexaenoic acid and L-isoleucine. The 16S rRNA gene sequencing analysis showed that XJZ could regulate gut microbiota disturbances in CAG rats, especially bile acid (BA) metabolism-related bacteria (Butyricimonas, Desulfovibrio, Bacteroides, Parabacteroides, Acetobacter and Alistipes). Molecular docking further showed that the differential metabolites regulated by XJZ had a good docking effect on BA-related targets. CONCLUSION: The current work indicated that XJZ's therapeutic action was strongly linked to BA-related microorganisms and metabolic processes. These findings provided new insights into the effects of XJZ for the treatment of CAG.


Asunto(s)
Medicamentos Herbarios Chinos , Gastritis Atrófica , Microbioma Gastrointestinal , Ratas , Animales , Gastritis Atrófica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Simulación del Acoplamiento Molecular , Metabolómica/métodos , Ácidos y Sales Biliares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA