Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Ethnopharmacol ; 326: 117909, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38350503

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gancao Decoction (GCD) is widely used to treat cholestatic liver injury. However, it is unclear whether is related to prevent hepatocellular necroptosis. AIM OF THE STUDY: The purpose of this study is to clarify the therapeutic effects of GCD against hepatocellular necroptosis induced by cholestasis and its active components. MATERIALS AND METHODS: We induced cholestasis model in wild type mice by ligating the bile ducts or in Nlrp3-/- mice by intragastrical administering Alpha-naphthylisothiocyanate (ANIT). Serum biochemical indices, liver pathological changes and hepatic bile acids (BAs) were measured to evaluate GCD's hepatoprotective effects. Necroptosis was assessed by expression of hallmarkers in mice liver. Moreover, the potential anti-necroptotic effect of components from GCD were investigated and confirmed in ANIT-induced cholestasis mice and in primary hepatocytes from WT mouse stimulated with Tumor Necrosis Factor alpha (TNF-α) and cycloheximide (CHX). RESULTS: GCD dose-dependently alleviated hepatic necrosis, reduced serum aminotranferase activity in both BDL and ANIT-induced cholestasis models. More importantly, the expression of hallmarkers of necroptosis, including MLKL, RIPK1 and RIPK3 phosphorylation (p- MLKL, p-RIPK1, p-RIPK3) were reduced upon GCD treatment. Glycyrrhetinic acid (GA), the main bioactive metabolite of GCD, effectively protected against ANIT-induced cholestasis, with decreased expression of p-MLKL, p-RIPK1 and p-RIPK3. Meanwhile, the expression of Fas-associated death domain protein (FADD), long isoform of cellular FLICE-like inhibitory protein (cFLIPL) and cleaved caspase 8 were upregulated upon GA treatment. Moreover, GA significantly increased the expression of active caspase 8, and reduced that of p-MLKL in TNF-α/CHX induced hepatocytes necroptosis. CONCLUSIONS: GCD substantially inhibits necroptosis in cholestatic liver injury. GA is the main bioactive component responsible for the anti-necroptotic effects, which correlates with upregulation of c-FLIPL and active caspase 8.


Asunto(s)
Colestasis , Medicamentos Herbarios Chinos , Ácido Glicirretínico , Glycyrrhiza , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Caspasa 8 , Necroptosis , Hígado , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Colestasis/patología , Ácido Glicirretínico/farmacología , 1-Naftilisotiocianato/toxicidad
2.
J Ethnopharmacol ; 313: 116560, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37149065

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestasis is a pathophysiological syndrome characterized by the accumulation of bile acids (BAs) that leads to severe liver disease. Artemisia capillaris is documented in Chinese Pharmacopoeia as the authentic resources for Yinchen. Although Yinchen (Artemisia capillaris Thunb.) decoction (YCD) has been used in China for thousands of years to treat jaundice, the underlying mechanisms to ameliorate cholestatic liver injury have not been elucidated. AIM OF THE STUDY: To investigate the molecular mechanism of how YCD protects against 1% cholic acid (CA) diet-induced intrahepatic cholestasis through FXR signaling. MATERIALS AND METHODS: Wild-type and Fxr-deficient mice were fed a diet containing 1% CA to establish the intrahepatic cholestasis model. The mice received low-, medium-, or high-dose YCD for 10 days. Plasma biochemical markers were analyzed, liver injury was identified by histopathology, and hepatic and plasma BA content was analyzed. Western blot was used to determine the expression levels of transporters and enzymes involved in BA homeostasis in the liver and intestine. RESULTS: In wild-type mice, YCD significantly improved plasma transaminase levels, multifocal hepatocellular necrosis, and hepatic and plasma BA contents, upregulated the expression of hepatic FXR and downstream target enzymes and transporters. Meanwhile, YCD significantly induced the expressions of intestinal FXR and FGF15 and hepatic FGFR4. In contrast, the hepatic protective effect of YCD on cholestasis was abolished in Fxr-deficient mice. CONCLUSION: YCD protects against cholestatic liver injury induced by a CA diet by restoring the homeostasis of BAs via activation of the liver FXR/SHP and ileal FXR/FGF15 signaling pathways. Furthermore, chlorogenic acid and caffeic acid may be the pharmacological agents in YCD responsible for protecting against cholestatic liver injury.


Asunto(s)
Colestasis Intrahepática , Colestasis , Ratones , Animales , Ácido Cólico/metabolismo , Ácido Cólico/farmacología , Hígado , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Colestasis Intrahepática/metabolismo , Ácidos y Sales Biliares/metabolismo , Dieta , Ratones Endogámicos C57BL
3.
BMC Complement Med Ther ; 23(1): 9, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627617

RESUMEN

BACKGROUND: Tripterygium wilfordii Hook. F. (TwHF), a traditional Chinese medicine, is widely used in the treatment of rheumatoid arthritis. Due to multiorgan toxicity, particularly hepatotoxicity, the application of TwHF is restricted. To clarify the hepatotoxic substances, zebrafish, hepatocytes and macrophages were used for screening based on hepatotoxic injury patterns. This study provides a basis for further elucidation of the hepatotoxic mechanism of TwHF. METHODS: First, 12 compounds were selected according to the chemical categories of TwHF. The fluorescence area and fluorescence intensity of zebrafish livers were observed and calculated. The viability of two hepatocyte lines was detected by CCK8 assay. TNF-α and IL-1ß mRNA expression in bone marrow-derived macrophages was used to evaluate macrophage activation, a factor of potential indirect hepatotoxicity. Finally, the hepatotoxic characteristics of 4 representative components were verified in mice in vivo. RESULTS: Parthenolide, triptolide, triptonide, triptobenzene H, celastrol, demethylzeylasteral, wilforlide A, triptotriterpenic acid A and regelidine significantly reduced the fluorescence area and fluorescence intensity of zebrafish livers. The viability of L-02 or AML-12 cells was significantly inhibited by parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral, and triptotriterpenic acid A. Parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral and triptobenzene H significantly increased TNF-α and IL-1ß mRNA levels in macrophages, while triptophenolide, hypodiolide and wilforine significantly reduced TNF-α and IL-1ß mRNA levels. Triptotriterpenic acid A, celastrol and triptobenzene H at a dose of 10 mg/kg significantly increased the levels of mouse serum alanine aminotransferase and aspartate aminotransferase and aggravated liver inflammation. CONCLUSIONS: Parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral, triptotriterpenic acid A and triptobenzene H might be the main hepatotoxic components of TwFH. Among them, only triptotriterpenic acid A presents direct hepatotoxicity. Triptobenzene H exerts indirect liver damage by activating macrophages. Parthenolide, triptolide, triptonide, celastrol, and demethylzeylasteral can directly and indirectly cause liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ratones , Animales , Tripterygium/química , Pez Cebra , Factor de Necrosis Tumoral alfa , ARN Mensajero
4.
Toxicol In Vitro ; 80: 105324, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35101544

RESUMEN

In this study, the inhibitory effect of components from Chinese Herb Medicine (CHMs) with potential hepatotoxicity was assessed by human bile salt export pump (hBSEP) vesicles with and without S9 metabolism. Sixty-three compounds from 22 hepatoxicity CHMs were selected as the test articles. In hBSEP vesicles, eighteen of them were found to have moderate or strong inhibitory effect towards BSEP. Further studies were performed to determine the IC50 values of strong inhibitors. For the compounds belong to CHMs reported to cause cholestasis and strong inhibitors defined in hBSEP vesicles, their relative transport activities of Taurocholic acid (TCA) were evaluated in hBSEP vesicles as well as hBSEP vesicles with S9 system (S9/hBSEP vesicles). The differences of their relative transport activities of TCA between the above two system were compared to reveal the net effect of metabolism on BSEP's activity. It was found that the inhibitory effect of Saikogenin A (SGA), Saikogenin D (SGD), Diosbulbin B (DB) and rhein were significantly increased; while the inhibitory effect of isobavachalcone, saikosaponin d and saikosaponin b2 were significantly decreased after S9 metabolizing. Identification of metabolic pathways suggested that CYP3A4 was responsible for aggravating inhibitory effect of SGA and SGD against BSEP.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/antagonistas & inhibidores , Medicamentos Herbarios Chinos/toxicidad , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Colestasis/metabolismo , Humanos , Hígado/metabolismo
5.
Drug Metab Dispos ; 48(10): 1044-1052, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32561594

RESUMEN

Venlafaxine (VEN), a first-line antidepressant, and Zuojin Pill (ZJP), a common Chinese herbal medicine consisting of Rhizoma Coptidis and Fructus Evodiae, have a high likelihood of combination usage in patients with depression with gastrointestinal complications. ZJP exhibits inhibitory effects on recombinant human cytochrome P450 isoenzymes (rhP450s), especially on CYP2D6, whereas VEN undergoes extensive metabolism by CYP2D6. From this perspective, we investigated the influence of ZJP on the metabolism of VEN in vitro and in rats for the first time. In this study, ZJP significantly inhibited the metabolism of VEN in both rat liver microsomes (RLM) and human liver microsomes (HLM); meanwhile, it inhibited the O-demethylation catalytic activity of RLM, HLM, rhCYP2D6*1/*1, and rhCYP2D6*10/*10, primarily through CYP2D6, with IC50 values of 129.9, 30.5, 15.4, and 2.3 µg/ml, respectively. Furthermore, the inhibitory effects of ZJP on hepatic metabolism and pharmacokinetics of VEN could also be observed in the pharmacokinetic study of rats. The area under drug concentration-time curve0-24 hour of VEN and its major metabolite O-desmethylvenlafaxine (ODV) increased by 39.6% and 22.8%, respectively. The hepatic exposure of ODV decreased by 57.2% 2 hours after administration (P = 0.014). In conclusion, ZJP displayed inhibitory effects on hepatic metabolism and pharmacokinetics of VEN in vitro and in rats mainly through inhibition of CYP2D6 activity. The human pharmacokinetic interaction between ZJP and VEN and its associated clinical significance needed to be seriously considered. SIGNIFICANCE STATEMENT: Zuojin Pill, a commonly used Chinese herbal medicine, demonstrates significant inhibitory effects on hepatic metabolism and pharmacokinetics of venlafaxine in vitro and in rats mainly through suppression of CYP2D6 activity. The human pharmacokinetic interaction between Zuojin Pill and venlafaxine and its associated clinical significance needs to be seriously considered.


Asunto(s)
Antidepresivos de Segunda Generación/farmacocinética , Inhibidores del Citocromo P-450 CYP2D6/farmacocinética , Medicamentos Herbarios Chinos/farmacocinética , Interacciones de Hierba-Droga , Clorhidrato de Venlafaxina/farmacocinética , Administración Oral , Animales , Antidepresivos de Segunda Generación/administración & dosificación , Citocromo P-450 CYP2D6/metabolismo , Inhibidores del Citocromo P-450 CYP2D6/administración & dosificación , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Concentración 50 Inhibidora , Masculino , Ratas , Proteínas Recombinantes/metabolismo , Clorhidrato de Venlafaxina/administración & dosificación
6.
Eur J Clin Pharmacol ; 72(6): 689-95, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27023460

RESUMEN

OBJECTIVE: Zuojin Pill has been shown to inhibit the cytochrome P450 (CYP) 2D6 isoenzyme in vitro. In Chinese individuals, CYP 2D6*10 is the most common allele with reduced enzyme activity. In this study, we investigated the pharmacokinetic interaction between Zuojin Pill and the sensitive CYP2D6 probe dextromethorphan in healthy Chinese volunteers with CYP2D6*10 genotype. METHODS: A pharmacokinetics interaction study was carried out in three groups with CYP2D6*1/*1 (n = 6), CYP2D6*1/*10 (n = 6), and CYP2D6*10/*10 (n = 6) genotypes. Each participant received a single oral dose of dextromethorphan (15 mg) followed by Zuojin Pill (3 g twice daily) for 7 days, and received 3 g Zuojin Pill with 15 mg dextromethorphan in the last day. Blood samples (0-24 h) and urine samples (0-12 h) were collected at baseline and after the administration of Zuojin Pill, and the samples' concentration of dextromethorphan and its main metabolite dextrorphan was determined. RESULTS: Compared to baseline values, co-administration of Zuojin Pill (3 g twice daily) for 7 days increased the AUC0-24 of dextromethorphan [mean (90 % CI)] by 3.00-fold (2.49∼3.61) and 1.71-fold (1.42∼2.06), and decreased oral clearance(CL/F) by 0.27-fold (0.2-0.40) and 0.57-fold (0.48-0.67) in the participants with CYP2D6*1/*1 and CYP2D6*1/*10 genotypes, respectively. In contrast, no significant change was observed in these pharmacokinetic parameters of the participants with CYP2D6*10/*10 genotype. CONCLUSION: These data demonstrated that administration of Zuojin Pill inhibited moderately CYP2D6-mediated metabolism of dextromethorphan in healthy volunteers. The inhibitory influence of CYP2D6 was greater in CYP2D6*1/*1 and CYP2D6*1/*10 groups than CYP2D6 *10/*10 group.


Asunto(s)
Antitusígenos/farmacocinética , Citocromo P-450 CYP2D6/genética , Dextrometorfano/farmacocinética , Medicamentos Herbarios Chinos/farmacología , Interacciones de Hierba-Droga , Adulto , Antitusígenos/sangre , Antitusígenos/orina , Pueblo Asiatico/genética , Dextrometorfano/sangre , Dextrometorfano/orina , Femenino , Genotipo , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
7.
Artículo en Inglés | MEDLINE | ID: mdl-25632291

RESUMEN

Coptis chinensis is commonly used in traditional Chinese medicine. The study investigated metabolic interaction of the active constituents (berberine, coptisine, palmatine, and jatrorrhizine) of Coptis chinensis in human liver microsomes. After incubation of the four constituents of Coptis chinensis in HLMs, the metabolism of the four constituents was observed by HPLC. The in vitro inhibition experiment between the active constituents was conducted, and IC50 value was estimated. Coptisine exhibited inhibitions against the formation of the two metabolites of berberine with IC50 values of 6.5 and 8.3 µM, respectively. Palmatine and jatrorrhizine showed the weaker inhibitory effect on the formation of the metabolites of berberine. Berberine showed a weak inhibitory effect on the production of coptisine metabolite with an IC50 value of 115 µM, and palmatine and jatrorrhizine had little inhibitory effect on the formation of coptisine metabolite. Berberine, coptisine, and jatrorrhizine showed no inhibitory effect on the generation of palmatine metabolite (IC50 > 200 µM). The findings suggested that there are different degrees of metabolic interaction between the four components. Coptisine showed the strongest inhibition toward berberine metabolism.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25538791

RESUMEN

This study investigated the effect of multidose administration of danshen ethanol extract on fexofenadine pharmacokinetics in healthy volunteers. A sequential, open-label, two-period pharmacokinetic interaction design was used. 12 healthy male volunteers received a single oral dose of fexofenadine (60 mg) followed by danshen ethanol extract (1 g orally, three times a day) for 10 days, after which they received 1 g of the danshen extract with fexofenadine (60 mg) on the last day. The plasma concentrations of fexofenadine was measured by LC-MS/MS. After 10 days of the danshen extract administration, the mean AUC and C max⁡ of the fexofenadine was decreased by 37.2% and 27.4% compared with the control, respectively. The mean clearance of fexofenadine was increased by 104.9%. The in vitro study showed that tanshinone IIA and cryptotanshinone could induce MDR1 mRNA. This study showed that multidose administration of danshen ethanol extract could increase oral clearance of fexofenadine. The increased oral clearance of fexofenadine is attributable to induction of intestinal P-glycoprotein.

9.
Artículo en Inglés | MEDLINE | ID: mdl-24223062

RESUMEN

The aim of this study was to investigate the effect of single- and multidose administration of the ethanol extract of danshen on in vivo CYP3A activity in healthy volunteers. A sequential, open-label, and three-period pharmacokinetic interaction study design was used based on 12 healthy male individuals. The plasma concentrations of midazolam and its metabolite 1-hydroxymidazolam were measured. Treatment with single dose of the extract caused the mean C max of midazolam to increase by 87% compared with control. After 10 days of the danshen extract intake, the mean AUC0-12, C max, and t 1/2 of midazolam were decreased by 79.9%, 66.6%, and 43.8%, respectively. The mean clearance of midazolam was increased by 501.6% compared with control. The in vitro study showed that dihydrotanshinone I in the extract could inhibit CYP3A, while tanshinone IIA and cryptotanshinone could induce CYP3A. In conclusion, a single-dose administration of the danshen extract can inhibit intestinal CYP3A, but multidose administration can induce intestinal and hepatic CYP3A.

10.
Artículo en Inglés | MEDLINE | ID: mdl-23935673

RESUMEN

In Chinese medicine, Xiexin decoction (XXD) has been used for the clinical treatment of diabetes for at least 1700 years. The present study was conducted to investigate the effective ingredients of XXD and their molecular mechanisms of antidiabetic nephropathy in rats. Rats with diabetes induced by high-fat diet and streptozotocin were treated with XXD extract for 12 weeks. XXD significantly improved the glucolipid metabolism disorder, attenuated albuminuria and renal pathological changes, reduced renal advanced glycation end-products, inhibited receptor for advanced glycation end-product and inflammation factors expression, suppressed renal nuclear factor- κ B pathway activity, and downregulated renal transforming growth factor- ß 1. The concentrations of multiple components in plasma from XXD were determined by liquid chromatography and tandem mass spectrometry. Pharmacokinetic/pharmacodynamic analysis using partial least square regression revealed that 8 ingredients of XXD were responsible for renal protective effects via actions on multiple molecular targets. Our study suggests that the renal protective role of XXD with multiple effective ingredients involves inhibition of inflammation through downregulation of the nuclear factor- κ B pathway, reducing renal advanced glycation end-products and receptor for advanced glycation end-product in diabetic rats.

11.
Food Chem Toxicol ; 57: 262-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23583485

RESUMEN

Among the various possible causes for drug interactions, pharmacokinetic factors such as inhibition of drug-metabolizing enzymes, especially cytochrome P450 (CYP) enzymes, are regarded as the most frequent and clinically important. Gypenosides is widely used as functional food and over-the-counter drug in East Asia. In this study, the in vitro inhibitory effects of gypenosides on the major human CYP enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) activities in human liver microsomes were examined using liquid chromatography-tandem mass spectrometry. Gypenosides showed the strongest inhibition of CYP2D6, followed by CYP2C8, CYP3A4 and CYP2C9. The IC50 values were 1.61 µg/mL, 20.06 µg/mL, 34.76 µg/mL (CYP3A4/midazolam), 46.73 µg/mL (CYP3A4/testosterone), and 54.52 µg/mL, respectively. Gypenosides exhibited competitive inhibition of CYP2D6 (Ki=1.18). In conclusion, Gypenosides might cause herb-drug interactions via inhibition of CYP2D6. An in vivo study is needed to examine this further.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Interacciones de Hierba-Droga , Microsomas Hepáticos/enzimología , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Inhibidores del Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Inhibidores del Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Gynostemma , Humanos , Inactivación Metabólica , Concentración 50 Inhibidora , Microsomas Hepáticos/efectos de los fármacos , Extractos Vegetales/farmacología
12.
Eur J Drug Metab Pharmacokinet ; 38(4): 283-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23430690

RESUMEN

Guizhi decoction (GZD) is a classic traditional Chinese medicine formula, clinically used for the treatment of influenza, common cold, and other pyretic conditions. A sensitive, specific, and validated liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to investigate the pharmacokinetic properties of cinnamic acid, hippuric acid, paeoniflorin, and glycyrrhetic acid in rat. After single dose oral administration of 7.9 g extract/kg body weight GZD in rats, plasma concentrations of cinnamic acid, hippuric acid, paeoniflorin, and glycyrrhetic acid were measured by LC-MS/MS. Pharmacokinetic parameters were calculated from the plasma concentration-time data. The values of AUC0-t, half-life (t 1/2), and C max were 7.2 ± 2.3 µg h/mL, 1.2 ± 0.3 h, and 9.2 ± 5.2 µg/mL for cinnamic acid, 53 ± 31 µg h/mL, 2.8 ± 2.0 h, and 17 ± 3 µg/mL for hippuric acid, 1.1 ± 0.5 µg h/mL, 1.9 ± 1.1 h, and 0.6 ± 0.3 µg/mL for paeoniflorin, and 11 ± 6 µg h/mL, 6.6 ± 2.5 h, and 0.9 ± 0.6 µg/mL for glycyrrhetic acid, respectively. The results would offer useful information for effective components of GZD in vivo.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Administración Oral , Animales , Benzoatos/administración & dosificación , Benzoatos/farmacocinética , Hidrocarburos Aromáticos con Puentes/administración & dosificación , Hidrocarburos Aromáticos con Puentes/farmacocinética , Calibración , Cromatografía Líquida de Alta Presión , Cinamatos/administración & dosificación , Cinamatos/farmacocinética , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Congelación , Glucósidos/administración & dosificación , Glucósidos/farmacocinética , Ácido Glicirretínico/administración & dosificación , Ácido Glicirretínico/farmacocinética , Semivida , Hipuratos/administración & dosificación , Hipuratos/farmacocinética , Indicadores y Reactivos , Espectrometría de Masas , Monoterpenos , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Control de Calidad , Ratas , Ratas Sprague-Dawley , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
13.
Drug Metab Dispos ; 40(2): 381-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22086980

RESUMEN

Rhizoma coptidis is a rhizome commonly used in traditional Chinese medicine. After oral administration of rhizoma coptidis extract, the plasma concentrations of its effective alkaloid constituents are so low that their systemic therapeutic actions cannot be explained. This study aimed to investigate the influence of lipopolysaccharide (LPS) on the pharmacokinetics of the rhizoma coptidis alkaloids. Pharmacokinetic experiments were performed with rats; both in vitro absorption and efflux experiments were carried out with everted rat gut sacs, whereas in vitro metabolism experiments were conducted with rat liver microsomes and intestinal S9 fractions. Mucosal changes were evaluated with light microscopy and transmission electron microscopy. The results showed that, in rat plasma, LPS pretreatment increased systemic alkaloid exposure. LPS pretreatment increased the in vitro absorption of the alkaloids and decreased their efflux. The efflux of vinblastine and rhodamine 123, P-glycoprotein substrates, also was decreased. The absorption of fluorescein isothiocyanate-labeled dextran (average molecular mass, 4 kDa), a gut paracellular permeability probe, was not influenced. Obvious damage was observed in the mucosa, but the tight junctions between epithelial cells remained intact. Intestinal, rather than hepatic, alkaloid metabolism was decreased. These findings indicated that LPS pretreatment increased systemic exposure to the alkaloids through enhancement of their absorption, which was related to decreased intestinal efflux and metabolism. The results add to the understanding of why rhizoma coptidis is active despite the low plasma concentrations of the rhizoma coptidis alkaloids measured in normal subjects and experimental animals.


Asunto(s)
Alcaloides/farmacocinética , Antiinflamatorios no Esteroideos/farmacocinética , Medicamentos Herbarios Chinos/farmacocinética , Íleon/metabolismo , Inflamación/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Alcaloides/sangre , Alcaloides/química , Alcaloides/metabolismo , Animales , Berberina/análogos & derivados , Berberina/análisis , Berberina/sangre , Berberina/química , Berberina/metabolismo , Berberina/farmacocinética , Disponibilidad Biológica , Coptis chinensis , Medicamentos Herbarios Chinos/química , Femenino , Glucurónidos/metabolismo , Íleon/inmunología , Íleon/ultraestructura , Inflamación/sangre , Inflamación/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/ultraestructura , Lipopolisacáridos , Masculino , Microsomas Hepáticos/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
14.
J Ethnopharmacol ; 138(1): 169-74, 2011 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-21924335

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rhizoma coptidis is used as an antidysenteric in clinics in China. However, patients suffering from dysentery are susceptible to the acute toxicity of Rhizoma coptidis. The current study investigates the effects of lipopolysaccharide (LPS), which are a key pathogenic factor in dysentery, on the acute toxicity of a Rhizoma coptidis extract in mice; possible mechanisms are proposed. MATERIALS AND METHODS: Acute toxicity and pharmacokinetic experiments in mice were conducted. The plasma concentration of Rhizoma coptidis alkaloids in mice was determined using liquid chromatography/tandem mass spectrometry. The activity of acetylcholinesterase (AChE) in the tissue homogenate was determined using an AChE determination kit. RESULTS: Pretreatment with LPS for 16 h increased the acute toxicity of the oral Rhizoma coptidis extract. Systemic exposure to Rhizoma coptidis alkaloids was also increased by LPS pretreatment. Neostigmine significantly increased whereas pyraloxime methylchloride reduced the acute toxicity of the Rhizoma coptidis extract. LPS pretreatment alone showed no significant effect on the activity of thoracoabdominal diaphragm AChE. However, it enhanced the inhibitory effect of the Rhizoma coptidis extract. LPS pretreatment did not affect the acute toxicity of various dosages of tail vein-injected berberine. CONCLUSIONS: LPS increased the acute toxicity of the oral Rhizoma coptidis extract in mice by increasing the systemic exposure to the Rhizoma coptidis alkaloids.


Asunto(s)
Acetilcolinesterasa/metabolismo , Berberina/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Coptis/química , Medicamentos Herbarios Chinos/toxicidad , Disentería/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Animales , Berberina/farmacocinética , Berberina/uso terapéutico , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/uso terapéutico , Coptis/toxicidad , Coptis chinensis , Esquema de Medicación , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos , Neostigmina/farmacología , Fitoterapia , Rizoma
15.
Xenobiotica ; 41(4): 290-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21319959

RESUMEN

The absorption and transport mechanisms of berberine, palmatine, jateorhizine, and coptisine were studied using a Caco-2 cells uptake and transport model, with the addition of cyclosporin A and verapamil as P-glycoprotein (P-gp) inhibitors and MK-571 as a multidrug resistance-associated protein 2 (MRP(2)) inhibitor. In the uptake experiment, berberine, palmatine, jateorhizine, and coptisine were all taken into Caco-2 cells, and their uptakes were increased in the presence of cyclosporin A or verapamil. In the transport experiment, P(app) (AP-BL) was between 0.1 and 1.0 × 10(6) cm/sec for berberine, palmatine, jateorhizine, and coptisine and was lower than P(app) (BL-AB). ER values were all >2. Cyclosporin A and verapamil both increased P(app) (AP-BL) but decreased P(app) (BL-AB) for berberine, palmatine, jateorhizine, and coptisine; ER values were decreased by >50%. MK-571 had no influence on the transmembrane transport of berberine, palmatine, jateorhizine, and coptisine. At a concentration of 1-100 µM, berberine, palmatine, jateorhizine, and coptisine had no significant effects on the bidirection transport of Rho123. Berberine, palmatine, jateorhizine, and coptisine were all P-gp substrates; and at the range of 1-100 µM, berberine, palmatine, jateorhizine, and coptisine had no inhibitory effects on P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Alcaloides de Berberina/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Absorción Intestinal/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Berberina/análogos & derivados , Berberina/metabolismo , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Ciclosporina/metabolismo , Ciclosporina/farmacología , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Propionatos/metabolismo , Propionatos/farmacología , Quinolinas/metabolismo , Quinolinas/farmacología , Verapamilo/metabolismo , Verapamilo/farmacología
16.
Br J Clin Pharmacol ; 69(6): 656-62, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20565457

RESUMEN

AIMS: To assess the effect of danshen extract on CYP3A4 activity using midazolam as an in vivo probe. METHODS: A sequential, open-label, two-period pharmacokinetic interaction study design was used to compare midazolam pharmacokinetic parameters before and after 14 days of administration of danshen tablets. Twelve healthy volunteers received a single oral dose (15 mg) of midazolam followed by danshen tablets (four tablets orally, three times a day) for 14 days. On the last day of the study they received four danshen tablets with a 15 mg midazolam tablet and plasma concentrations of midazolam and its corresponding metabolite 1-hydroxylmidazolam were measured prior to and after the administration of danshen tablets periodically for 12 h. RESULTS: The 90% confidence intervals of C(max,)t(1/2), CL/F and AUC(0,infinity) of midazolam before and after administration of danshen tablets were (0.559, 0.849), (0.908, 1.142), (1.086, 1.688) and (0.592, 0.921), respectively; and those of C(max), t(1/2) and AUC(0,infinity) of 1-hydroxylmidazolam after vs. before administration of danshen tablets were (0.633, 0.923), (0.801, 1.210) and (0.573, 0.980), respectively. Ratios of geometric LS means of C(max(1OHMid)) : C(max(Mid)) and AUC(max(1OHMid)) : AUC(max(Mid)) (after vs. before 14-day danshen) were 1.072 and 1.035, respectively. CONCLUSIONS: Our findings suggest that multiple dose administration of danshen tablets may induce CYP3A4 in the gut. Accordingly, caution should be taken when danshen products are used in combination with therapeutic drugs metabolized by CYP3A.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hipnóticos y Sedantes/farmacocinética , Midazolam/farmacocinética , Administración Oral , Adulto , Área Bajo la Curva , China , Humanos , Masculino , Salvia miltiorrhiza , Adulto Joven
17.
Drug Metab Dispos ; 36(7): 1308-14, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18411400

RESUMEN

The potential for herb-drug interactions has recently received greater attention worldwide, considering the fact that the use of herbal products becomes more and more widespread. The goal of this work was to examine the potential for the metabolism-based drug interaction arising from seven active components (danshensu, protocatechuic aldehyde, protocatechuic acid, salvianolic acid B, tanshinone I, tanshinone IIA, and cryptotanshinone) of danshen extract. Probe substrates of cytochrome P450 enzymes were incubated in human liver microsomes (HLMs) with or without each component of danshen extract. IC(50) and K(i) values were estimated, and the types of inhibition were determined. Among the seven components of danshen extract, tanshinone I, tanshinone IIA, and cryptotanshinone were potent competitive inhibitors of CYP1A2 (K(i) = 0.48, 1.0, and 0.45 microM, respectively); danshensu was a competitive inhibitor of CYP2C9 (K(i) = 35 microM), and cryptotanshinone was a moderate mixed-type inhibitor of CYP2C9 (K(i) = 8 microM); cryptotanshinone inhibited weakly and in mixed mode against CYP2D6 activity (K(i) = 68 microM), and tanshinone I was a weak inhibitor of CYP2D6 (IC(50) = 120 microM); and protocatechuic aldehyde was a weak inhibitor of CYP3A4 (IC(50) = 130 and 160 microM for midazolam and testosterone, respectively). These findings provided some useful information for safe and effective use of danshen preparations in clinical practice. Our data indicated that it was necessary to study the in vivo interactions between drugs and pharmaceuticals with danshen extract.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/farmacología , Microsomas Hepáticos/efectos de los fármacos , Catálisis , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos del Citocromo P-450 , Medicamentos Herbarios Chinos/química , Humanos , Cinética , Microsomas Hepáticos/enzimología , Salvia miltiorrhiza
18.
Br J Clin Pharmacol ; 65(2): 270-4, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17961194

RESUMEN

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: Danshen extract is widely used for the treatment and prevention of coronary heart disease and other diseases of senility in Asia. Danshen extract and theophylline may be prescribed together to treat patients with asthma. In human, theophylline with low therapeutic index is mainly metabolized by CYP1A2. In vitro findings have shown that human CYP1A2 is inhibited by the ethyl acetate extract of danshen and danshen pharmaceutical product. There may be drug interactions between danshen extract and theophylline (CYP1A2 substrate). WHAT THIS STUDY ADDS: This study concerned drug interactions between danshen extract and theophylline in Chinese volunteers. Long-term oral intake of danshen extract does not change the basic pharmacokinetic parameters of theophylline. Dose adjustment of theophylline thus may not be necessary in patients receiving concomitant therapy with danshen extract. AIMS: To examine the potential effect of danshen extract on the pharmacokinetics of theophylline. METHODS: In a sequential cross-over study with two phases, 12 volunteers took 100 mg theophylline on day 1 and day 15. From day 2 to day 15, volunteers received danshen extract tablets three times daily, four tablets each time for 14 days. On day 15, they received four danshen extract tablets with 100 mg theophylline. Plasma concentrations of theophylline were measured on days 1 and 15 periodically for 24 h. RESULTS: The 90% confidence interval of C(max), t(1/2) and CL/F of theophylline with 14-day danshen extract tablets vs. without comedication were (101.42, 121.36) (84.57, 106.72) and (88.82, 105.72), respectively. The time to peak plasma theophylline concentration was unchanged by danshen (P > 0.05). The pharmacokinetics parameter of theophylline was unaffected by danshen extract. CONCLUSIONS: Danshen extract does not influence the metabolism of theophylline in healthy volunteers. Dose adjustment of theophylline thus may not be necessary in patients receiving concurrent therapy with danshen extract tablets.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Salvia miltiorrhiza , Teofilina/farmacocinética , Estudios Cruzados , Interacciones Farmacológicas/fisiología , Humanos , Fenantrolinas/sangre , Fenantrolinas/farmacocinética , Teofilina/sangre , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA