Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30174705

RESUMEN

BACKGROUND: Chemotherapy-induced thrombocytopenia (CIT) is a serious complication among patients with gynecological malignancies, yet management options are limited. This study aimed at reporting the potential of the Chang Gung platelet elevating formula (CGPEF), a prescription with a fixed proportion of Chinese herbs, for improving CIT among gynecologic cancer patients. MATERIALS: From 1/1/2007 to 31/12/2009, a total of 23 patients with two consecutive CIT episodes (≤ 100×103 /µL) (last cycle: C0; index cycle: C1) received the CGPEF from the nadir of platelet count of C1 and through the subsequent chemotherapy cycles (C2 and beyond). The CGPEF was taken orally four times a day. The evolution of platelet counts of 18 patients after administration of CGPEF was analyzed (2 patients had different chemotherapy regimens after CGPEF, two patients discontinued CGPEF due to the flavor and the amount of CGPEF, and one patient had no further chemotherapy). RESULTS: Most of the patients had recurrent ovarian cancer (11/18, 61%) with a median of 2.5 previous chemotherapy regimens, and carboplatin-based regimens were the most commonly used for these patients (13/18, 72%). The trend of successive CIT could be reversed after taking CGPEF. Also, the platelet nadir was higher after CGPEF treatment (16.5×103/µL versus 32×103/µL, before and after CGPEF treatment, resp., p = 0.002). Moreover, the chemotherapy interval decreased from 30.5 days to 24 days. No thrombocytosis, clinical bleeding, thromboembolism, or other adverse events were found among these patients. CONCLUSIONS: The CGPEF is worthy of further large-scale, well-designed clinical trials for CIT among gynecological cancer patients.

2.
Sensors (Basel) ; 12(4): 3952-63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666012

RESUMEN

This paper reports a versatile nano-sensor technology using "top-down" poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically V(th)-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady V(th) adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording.


Asunto(s)
Nanocables , Semiconductores , Silicio/química , ADN/análisis , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA