Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Poult Sci ; 103(4): 103554, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401225

RESUMEN

Heat stress (HS) causes oxidative damage and abnormal metabolism of muscle, thus impairing the meat quality in broilers. Selenium is an indispensable element for enhancing antioxidant systems. In our previous study, we synthesized a novel type of biogenic selenium nanoparticles synthesized with alginate oligosaccharides (SeNPs-AOS), and found that the particle size of Se is 80 nm and the Se content is 8% in the SeNPs-AOS; and dietary 5 mg/kg SeNPs-AOS has been shown to be effective against HS in broilers. However, whether SeNPs-AOS can mitigate HS-induced the impairment of thigh muscle quality in broilers is still unclear. Therefore, the purpose of this study was to investigate the protective effects of dietary SeNPs-AOS on meat quality, antioxidant capacity, and metabolomics of thigh muscle in broilers under HS. A total of 192 twenty-one-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates per group (8 broilers per replicate) according to a 2 × 2 experimental design: thermoneutral group (TN, broilers raised under 23±1.5°C); TN+SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (broilers raised under 33 ± 2°C for 10 h/d); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). The results showed that HS increased the freezing loss, cooking loss, and malondialdehyde (MDA) content of thigh muscle, whereas decreased the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as downregulated the mRNA expression of SOD2, CAT, GPX3, nuclear factor erythroid 2-related factor 2 (Nrf2), selenoprotein S (SELENOS), solute carrier family 7 member 11 (SLC7A11), GPX4, and ferroportin 1 (Fpn1) of thigh muscle (P < 0.05). Dietary SeNPS-AOS reduced the b* value, elevated the pH0min value and the activities of T-SOD, GSH-Px, glutathione S-transferase (GST) and the mRNA expression levels of GSTT1, GSTA3, GPX1, GPX3, ferritin heavy polypeptide-1 (FTH1), and Fpn1 of thigh muscle in broilers under HS (P < 0.05). Nontargeted metabolomics analysis identified a total of 79 metabolites with significant differences among the four groups, and the differential metabolites were mainly enriched in 8 metabolic pathways including glutathione metabolism and ferroptosis (P < 0.05). In summary, dietary 5 mg/kg SeNPs-AOS (Se content of 8%) could alleviate HS-induced impairment of meat quality by improving the oxidative damage, metabolic disorders and ferroptosis of thigh muscle in broilers challenged with HS. Suggesting that the SeNPs-AOS may be used as a novel nano-modifier for meat quality in broilers raised in thermal environment.


Asunto(s)
Ferroptosis , Selenio , Animales , Antioxidantes/metabolismo , Selenio/metabolismo , Pollos/fisiología , Muslo , Suplementos Dietéticos/análisis , Músculo Esquelético , Respuesta al Choque Térmico , Superóxido Dismutasa/metabolismo , Carne/análisis , ARN Mensajero/metabolismo , Alimentación Animal/análisis
2.
Antioxidants (Basel) ; 12(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38001826

RESUMEN

Selenium (Se) is an essential trace element for maintaining health due to its ideal antioxidant properties. We previously prepared a new type of biogenic selenium nanoparticles based on alginate oligosaccharides (SeNPs-AOS), and this study aimed to investigate the protective effects of SeNPs-AOS (Se particle size = 80 nm, Se content = 8%) on organ health in broilers challenged with HS. A total of 192 21-day-old Arbor Acres broilers were randomly divided into four groups according to a 2 × 2 experimental design, including a thermoneutral zone group (TN, raised under 23 ± 1.5 °C); TN + SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (HS, raised under 33 ± 2 °C for 10 h/day); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). There were six replicates in each group (eight broilers per replicate). The results showed that SeNPs-AOS improved the splenic histomorphology, enhanced the activity of catalase (CAT) and glutathione peroxidase (GSH-Px) of the spleen, as well as upregulating the splenic mRNA expression of antioxidant-related genes in broilers under HS. In addition, SeNPs-AOS reversed the pathological changes in bursa caused by HS increased the activity of GST, GSH-Px, and CAT and upregulated the mRNA expression of Nrf2 and antioxidant-related genes in the bursa of heat-stressed broilers. In addition, dietary SeNPs-AOS improved the hepatic damage, increased the activity of GSH-Px in the liver, and upregulated the mRNA expression of antioxidant-related genes while downregulating the Keap1 gene expression of the liver in broilers during HS. Moreover, dietary SeNPs-AOS upregulated the anti-ferroptosis-related genes expression of liver in broilers under HS. In conclusion, dietary SeNPs-AOS could relieve HS-induced oxidative damage to the spleen, bursa of Fabricius and liver in broilers by upregulating the Nrf2-mediated antioxidant gene expression and SeNPs-AOS could also upregulate the expression of hepatic Nrf2-related anti-ferroptosis genes in heat-stressed broilers. These findings are beneficial for the development of new nano-antioxidants in broilers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA