Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Transl Res ; 16(2): 654-668, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463585

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease with complex pathogenesis, including alterations in the gut microbiota. Gui Zhi Shao Yao Zhi Mu Decoction (GSZD), a traditional Chinese herbal formula, has shown efficacy in RA treatment, but its impact on intestinal microflora remains unclear. This study aimed to investigate the effects of GSZD combined with leflunomide on the gut microbiota of RA patients. METHODS: The study enrolled 48 RA patients who were randomly assigned to either a control group receiving leflunomide or a treatment group receiving GSZD combined with leflunomide for 12 weeks. Gut microbiota composition was analyzed pre- and post-intervention using 16S rDNA sequencing. Changes in microbial diversity, abundance, and metabolic functions were assessed. RESULTS: Post-treatment, both groups exhibited significant alterations in gut microbiota composition. GSZD combined with leflunomide led to an increased Bacteroidetes/Firmicutes ratio and a reduction in Actinobacteria compared to leflunomide alone. This was associated with beneficial shifts in microbial genera and metabolic pathways, suggesting improved gut health and systemic immune modulation. CONCLUSION: GSZD combined with leflunomide significantly modulates the gut microbiota in RA patients. This study provides insights into the mechanisms underlying the therapeutic effects of GSZD and highlights the potential of integrating traditional Chinese medicine with conventional treatments in managing RA.

2.
Biomed Res Int ; 2021: 2793823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938805

RESUMEN

Hyperuricemia, an independent risk factor for ensuing chronic kidney disease (CKD), contributed to tubulointerstitial fibrosis and insufficiency of renal fatty acid oxidation. Many studies have shown that renal fatty acid oxidation dysfunction is related to the TGF-ß1/Smad3 signaling pathway. We experimented the effects of Zishen Qingre Tongluo Formula (ZQTF) on the adenine/yeast-induced HN rats and uric acid-induced renal mouse tubular epithelial cells (mTECs), determined whether this effect was related to the TGF-ß1/Smad3 signaling pathway, and further investigated the relationship between this effect and renal fatty acid oxidation. Rats were given intraperitoneally with adenine (100 mg/kg) and feed chow with 10% yeast for 18 days and then received ZQTF (12.04 g/kg/day) via intragastric gavage for eight weeks. The TGF-ß1/Smad3 signaling pathway and renal fatty acid oxidation protein were detected by using western blotting, real-time PCR, and immunohistochemistry staining. mTECs induced by UA were used to investigate the relationship between the TGF-ß1/Smad3 signaling pathway and renal fatty acid oxidation. After treatment with ZQTF, levels of UA, 24 h UTP, BUN, and Scr were significantly decreased and histologic injuries were visibly ameliorated in HN rats. Western blotting, real-time PCR, and immunohistochemistry staining revealed that PGC-1α, PPARγ, and PPARα significantly increased, and fibronectin, collagen 1, and P-Smad3 significantly decreased in HN rats and UA-induced mTECs after ZQTF treatment. SIS3 (a specific inhibitor of Smad3) treatment significantly increased the expressions of PGC-1α, PPARγ, and PPARα and decreased the expressions of fibronectin, collagen 1, and P-Smad3 in UA-induced mTECs. Our study demonstrated that ZQTF exhibited renoprotective effects by promoting renal fatty acid oxidation via the regulation of the TGF-ß1/Smad3 signaling pathway. Thus, the present results indicated that ZQTF was a novel antifibrotic strategy for hyperuricemic nephropathy.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fibrosis/tratamiento farmacológico , Hiperuricemia/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Fibronectinas/metabolismo , Fibrosis/metabolismo , Hiperuricemia/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Nefrología/métodos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Ácido Úrico/metabolismo
3.
Front Med (Lausanne) ; 8: 747922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621768

RESUMEN

Tripterygium wilfordii Hook. f. (TWHF) is a traditional Chinese herbal medicine and widely used to treat diabetic kidney disease in China. Emerging evidences have revealed its ability to attenuate diabetic nephropathy (DN). Tripterygium wilfordii polyglycosides (TWPs), triptolide (TP), and celastrol are predominantly active compounds isolated from TWHF. The effects and molecular mechanisms of TWHF and its active compounds have been investigated in recent years. Currently, it is becoming clearer that the effects of TWHF and its active compounds involve in anti-inflammation, anti-oxidative stress, anti-fibrosis, regulating autophagy, apoptosis, and protecting podocytes effect. This review presents an overview of the current findings related to the effects and mechanisms of TWHF and its active compounds in therapies of DN, thus providing a systematic understanding of the mechanisms and therapeutic targets by which TWHF and its active compounds affect cells and tissues in vitro and in vivo.

4.
Bol. latinoam. Caribe plantas med. aromát ; 20(3): 315-323, may. 2021. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1343489

RESUMEN

To investigate effectsof Yangyinyiqi Mixture on pulmonary fibrosis caused by bleomycin. SD ratswere divided randomly into: model group(distilled water,1 mL·0.1 kg-1), dexamethasone acetate group (dexamethasone acetate, the dosage was reduced gradually), low-dose group (Yangyinyiqi Mixture, 11 g·kg-1), moderate-dose group (Yangyinyiqi Mixture, 22 g·kg-1), high-dose group (Yangyinyiqi Mixture, 44 g·kg-1) and control group (distilled water, 1 mL·0.1 kg-1). Yangyinyiqi Mixture and dexamethasone acetate were intragastrically administrated. Lung tissue was collected for histopathological examination. Compared with control group, collagen markedly increased and HYP content significantly increased on 7th day in model group (p<0.01). On 28th day, collagen was diffusely deposited, alveolar was destroyed, and HYP content significantly increased (p<0.01). Compared with model group, bleomycin-induced suffering injury caused MMP-9 expression levels to rapidly increase (7and 14 days, p<0.01). TIMP-1 markedly increased (7and 14 days, p<0.01) and stayed at a high level to28th day. Yangyinyiqi Mixture exerted an effect against pulmonary fibrosis, which could involved prevention of collagen deposition through inhibitingMMP-9 and TIMP-1 expression.


El trabajo investiga los efectos de la mezcla Yangyinyiqi sobre la fibrosis pulmonary causada por bleomicina. Ratas SD se dividieron aleatoriamente en: grupo modelo (agua destilada, 1 mL·0.1 kg-1), grupo acetate de dexametasona (acetate de dexametasona, la dosis se redujo gradualmente), grupo de dosis baja (mezcla Yangyinyiqi, 11 g·kg-1), grupo de dosis moderada (mezcla Yangyinyiqi, 22 g·kg-1), grupo de dosis alta (mezcla Yangyinyiqi, 44 g·kg-1) y grupo control (agua destilada, 1 Ml·0.1 kg-1). La mezcla de Yangyinyiqi y el acetate de dexametasona se administraron por vía intragástrica. Se recolectó tejido pulmonary para examen histopatológico. En comparación con el grupo control, el colágeno aumentó notablemente y el contenido de HYP aumentó significativamente el séptimo día en el grupo modelo (p<0.01). El día 28, el colágeno se depositó difusamente, se produjo destrucción alveolar y el contenido de HYP aumento significativamente (p<0.01). En comparación con el grupo modelo, la lesión inducida por bleomicina causó que los niveles de expression de MMP-9 aumentaron rápidamente (7 y 14 días, p<0.01). TIMP-1 aumentó notablemente (7 y 14 días, p<0.01) y se mantuvo en un nivel alto hasta el día 28. La mezcla Yangyinyiqi ejerció un efecto contra la fibrosis pulmonary, lo que podría implicar la prevención del deposito de colágenio mediante la inhibición de la expression de MMP-9 y TIMP-1.


Asunto(s)
Animales , Masculino , Ratas , Fibrosis Pulmonar/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Bleomicina , Dexametasona/administración & dosificación , Western Blotting , Ratas Sprague-Dawley , Metaloproteinasa 1 de la Matriz , Modelos Animales de Enfermedad , Hidroxiprolina/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-32963573

RESUMEN

BACKGROUND: Organ fibrosis is a common endpoint of a variety of diseases. Many studies have shown that the pathogenesis of diabetic kidney disease (DKD) is related to the excessive activation of the Wnt/ß-catenin signaling pathway on podocytes, so the treatment of DKD starts from this signaling pathway. At the same time, DKD, as a metabolic disease, has many connections related to podocyte autophagy. OBJECTIVES: We experimented the effects of Mahuang Fuzi and Shenzhuo decoction (MFSD) which is the combination of Mahuang Fuzi decoction and Shenzhuo decoction in traditional Chinese medicine compounds used "The Golden Chamber" in high glucose-induced podocytes, determined whether this effect was related to Wnt/ß-catenin signaling pathway, and further investigated the relationship between this effect and autophagy. METHODS: The mice podocytes were stimulated by using 30 mmol/L of high glucose and serum containing MFSD or Wnt/ß-catenin signaling pathway inhibitor DKK1 (100 ng/ml) was used to intervene podocytes before high glucose stimulation. Podocyte injury-related proteins, Wnt/ß-catenin signaling pathway-related proteins, and autophagy-related proteins were detected by using western blotting and immunofluorescence analysis. RESULTS: Our results showed that DKK1 and MFSD treatment significantly upregulated the protein expressions of nephrin, podocin, podocalyxin, and podoplanin in high glucose-induced podocytes and downregulated the ß-catenin protein expression. Furthermore, the protein expressions of beclin1, LC3B, and P62 were also significantly increased in high glucose-induced podocytes. CONCLUSION: Our experiments confirmed that the destruction of podocytes in DKD is related to the excessive activation of Wnt/ß-catenin signaling pathway and the inhibition of autophagy after activation. MFSD treatment can inhibit the activation of Wnt/ß-catenin signaling pathway in podocytes stimulated by high glucose and helpful in reducing the podocyte injury. This protective mechanism can be related to the enhancement of podocyte autophagy by MFSD treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA