Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611823

RESUMEN

(1) Background: Diabetes is a common metabolic disease that seriously endangers human health. In the present study, we investigated the therapeutic effects of the active ingredient Eleutheroside B (EB) from the traditional Chinese medicine Eleutheroside on diabetes mellitus in a zebrafish model. Concomitant hepatic injury was also analysed, along with the study of possible molecular mechanisms using metabolomics technology. This work should provide some theoretical references for future experimental studies. (2) Methods: A zebrafish diabetes model was constructed by soaking in a 1.75% glucose solution and feeding a high-fat diet. The intervention drug groups were metformin (100 µg∙mL-1) and EB (50, 100, and 150 µg∙mL-1) via water-soluble exposure for 30 days. Glucose, TG, TC, LDL-C, and HDL-C were evaluated in different treatment groups. GLUT4 protein expression was also evaluated in each group, and liver injury was observed by HE staining. Metabolomics techniques were used to investigate the mechanism by which EB regulates endogenous markers and metabolic pathways during the development of diabetes. (3) Results: All EB treatment groups in diabetic zebrafish showed significantly reduced body mass index (BMI) and improved blood glucose and lipid profiles. EB was found to upregulate GLUT4 protein expression and ameliorate the liver injury caused by diabetes. Metabolomics studies showed that EB causes changes in the metabolic profile of diabetic zebrafish. These were related to the regulation of purine metabolism, cytochrome P450, caffeine metabolism, arginine and proline metabolism, the mTOR signalling pathway, insulin resistance, and glycerophospholipid metabolism. (4) Conclusions: EB has a hypoglycaemic effect in diabetic zebrafish as well as significantly improving disorders of glycolipid metabolism. The mechanism of action of EB may involve regulation of the mTOR signalling pathway, purine metabolism, caffeine metabolism, and glycerophospholipid metabolism.


Asunto(s)
Diabetes Mellitus , Glucosa , Glucósidos , Fenilpropionatos , Humanos , Animales , Metabolismo de los Lípidos , Pez Cebra , Cafeína , Transportador de Glucosa de Tipo 4 , Serina-Treonina Quinasas TOR , Glicerofosfolípidos
2.
J Ethnopharmacol ; 319(Pt 3): 117349, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY: This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS: Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS: The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1ß), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS: In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.


Asunto(s)
Antineoplásicos , Eleutherococcus , Neoplasias , Humanos , Eleutherococcus/química , Cardiotoxicidad/tratamiento farmacológico , Farmacología en Red , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Apoptosis
3.
J Ethnopharmacol ; 324: 117777, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38219879

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shenze Shugan capsule is a prescription of traditional Chinese medicine for nonalcoholic steatohepatitis treatment. It includes Rhei Radix et Rhizoma (RR), Cassiae Semen (CS) and Alismatis Rhizoma(AR), which widely contains rhein, emodin, aurantio-obtusin, alisol A and alisol B 23-monoacetate. AIM OF THE STUDY: In this study, we aimed to explore the safety of the medicine, and further elucidate the mechanism of apoptosis induction in HK-2 cells by five components, including rhein, emodin, aurantio-obtusin, alisol A and alisol B 23-monoacetate. MATERIALS AND METHODS: We investigated the nephrotoxicity of Shenze Shugan capsule, including RR, CS, AR and mixed herbs given for two months in rats. Superoxide dismutase (SOD) in kidney tissues, urea nitrogen (BUN) and creatinine (CRE) in serum were detected, and renal pathology analysis was performed. In cell experiments, the apoptotic rate and cell cycle distribution of HK-2 cells were tested by flow cytometry. The levels of mitochondrial membrane potential (ΔΨm) and related protein expression in mitochondrial pathway were measured as well. RESULTS: We confirmed that two months of administering high doses(60 times the dose for clinical use in adults) of RR, CS or mixed herbs upregulated the levels of CRE and RUN, inhibited SOD activity, and increased the degree of tubular degeneration and glomerular dilatation, but Shenze Shugan capsule has no significant differences in renal structure or renal function. In addition, we found that five components all concentration-dependently inhibited HK-2 cells proliferation and induced apoptosis, especially aurantio-obtusin as the novel nephrotoxic component. Rhein and emodin significantly induced S/M accumulation, but aurantio-obtusin, alisol A and alisol B 23-monoacetate significantly induced G1/M accumulation in HK-2 cells. Similarly, they could induce Caspase3 activation, loss of mitochondrial membrane potential (ΔΨm), and down-regulation of Bcl-2 and up-regulation of Bax. CONCLUSIONS: Through a two-month subchronic toxicity study in rats, our preliminary determination is that this formulation is safe and reliable for long-term use. Interestingly, the potentially toxic herbs such as RR, CS, AR can reduce toxicity by drug compatibility. When further exploring the mechanism of action of toxic herbs, we found that mitochondrial pathway is involved in the apoptosis of HK -2 cells induced by rhein, emodin, aurantio-obtusin, alisol A and alisol B 23-monoacetate. Our findings provide new ideas for safety studies of Shenze Shugan capsule.


Asunto(s)
Emodina , Ratas , Animales , Antraquinonas/toxicidad , Apoptosis , Superóxido Dismutasa
4.
Artículo en Inglés | MEDLINE | ID: mdl-37384958

RESUMEN

The oviduct of female Rana dybowskii is a functional food and can be used as a component of Traditional Chinese medicine. The differentially expressed genes enriched was screened in cell growth of three Rana species. We quantitatively analyzed 4549 proteins using proteomic techniques, enriching the differentially expressed proteins of Rana for growth and signal transduction. The results showed that log2 expression of hepatoma-derived growth factor (HDGF) was increased. We further verified 5 specific differential genes (EIF4a, EIF4g, HDGF1, HDGF2 and SF1) and found that HDGF expression was increased in Rana dybowskii. Through acetylation modification analysis, we identified 1534 acetylation modification sites in 603 proteins, including HDGF, and found that HDGF acetylation expression was significantly reduced in Rana dybowskii. Our results suggest that HDGF is involved in the development of oviductus ranae, which is regulated by acetylation modification.


Asunto(s)
Oviductos , Proteómica , Humanos , Femenino , Animales , Acetilación , Oviductos/metabolismo , Ranidae/metabolismo
5.
Chem Biodivers ; 20(4): e202200949, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36869005

RESUMEN

This study investigated the effect of butanol extract of AS (ASBUE) on atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. The mice were administered ASBUE (390 or 130 mg/kg/day) or rosuvastatin (RSV) via oral gavage for eight weeks. In ApoE-/- mice, ASBUE suppressed the abnormal body weight gain and improved serum and liver biochemical indicators. ASBUE remarkably reduced the aortic plaque area, improved liver pathological conditions, and lipid metabolism abnormalities, and altered the intestinal microbiota structure in ApoE-/- mice. In the vascular tissue of ASBUE-treated mice, P-IKKß, P-NFκB, and P-IκBα levels tended to decrease, while IκB-α increased in high fat-diet-fed atherosclerotic mice. These findings demonstrated the anti-atherosclerotic potential of ASBUE, which is mediated by the interaction between the gut microbiota and lipid metabolism and regulated via the Nuclear Factor-kappa B (NF-κB) pathway. This work paves the groundwork for subsequent studies to develop innovative drugs to treat atherosclerosis.


Asunto(s)
Aterosclerosis , Eleutherococcus , Extractos Vegetales , Animales , Ratones , Apolipoproteínas/genética , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Butanoles , Dieta Alta en Grasa/efectos adversos , Eleutherococcus/química , FN-kappa B/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
6.
Oxid Med Cell Longev ; 2023: 1983616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798685

RESUMEN

Background: Spleen deficiency diarrhea (SDD) is a common Traditional Chinese Medicine (TCM) gastrointestinal condition, the causes of which include dysfunction of the intestinal barrier and microbiota. Rice water-fried Atractylodis Rhizoma (RAR) is a commonly used drug to treat this condition, but its mechanism remains unclear. This study explored the related mechanisms of ethanolic extract of rice water-fried Atractylodis Rhizoma (EAR) in the treatment of SDD by examining changes in the intestinal microbiota. Method: Wistar rats were randomly divided into 4 groups including the control, model, EAR low, and high-dose groups, 6 rats in each group. All rats, except the control group, were induced to develop SDD by a bitter-cold purgation method with rhubarb. The therapeutic effect of EAR on SDD was evaluated by pathological sections, inflammatory indicators (TNF-α, IL-1ß, and IL-10), gastrointestinal-related indicators (GAS, DAO, D-lactate, VIP, and SIgA), and intestinal flora (bacteria and fungi) analysis. Results: The results showed that the developed SDD rat model (model group) showed weight loss, decreased food intake, and increased fecal moisture content. Compared with those of the control group, the levels of TNF-α, IL-1ß, DAO, D-lactate, and VIP in the model group were significantly increased, but the levels of IL-10, GAS and SIgA were significantly decreased (p < 0.05). However, the indicators were significantly improved after EAR treatment, indicating that EAR maintained the balance of pro- and anti-inflammatory cytokines and reduced gastric emptying, thereby protecting intestinal barrier function, alleviating intestinal mucosal injury, and relieving SDD by regulating the release of neurotransmitters. EAR was also shown to prevent infection by promoting the accumulation of noninflammatory immunoglobulin SIgA and improving intestinal mucosal immunity to inhibit the adhesion of bacteria, viruses, and other pathogens. Intestinal microbiome analysis showed that the intestinal bacteria and fungi of SDD model rats changed greatly compared with the control group, resulting in intestinal microecological imbalance. The reversal in the composition of the flora after EAR treatment was mainly characterized by a large enrichment of beneficial bacteria represented by Lactobacillus and a decrease in the abundance of potentially pathogenic fungi represented by Aspergillus. Thus, it was speculated that EAR primarily functions to alleviate SDD by increasing the abundance of beneficial bacteria and reducing the abundance of potentially pathogenic fungi. Conclusion: The strong therapeutic effect of EAR on SDD suggests that it is a promising treatment for this condition.


Asunto(s)
Atractylodes , Microbioma Gastrointestinal , Oryza , Ratas , Animales , Bazo/patología , Ratas Wistar , Interleucina-10 , Factor de Necrosis Tumoral alfa/farmacología , Diarrea/tratamiento farmacológico , Diarrea/patología , Bacterias , Inmunoglobulina A Secretora/farmacología , Lactatos/farmacología , Agua/farmacología
7.
J Ethnopharmacol ; 303: 115978, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519753

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Meyer reportedly exhibits various beneficial pharmacological activities. Panax ginseng glycoproteins (PGG) are a class of glycosylated protein components extracted from ginseng and can exert significant activity for improving learning and memory abilities. AIM OF THE STUDY: The objective of the present study was to investigate the PGG-mediated protective mechanism against neurodegenerative diseases via the Notch signaling pathway using proteomic methods. MATERIALS AND METHODS: We examined learning and memory in mice using the Morris water maze and nest-building paradigms. The PGG structure was determined using multi-information fusion based on liquid chromatography-mass spectrometry (LC/MS). Accurate glycosylation sites of glycoproteins were identified using the advanced glycosylation analysis software Byonic. Furthermore, connection modes of the oligosaccharide chain were clarified by methylation analysis of sugar residues. The differentially expressed proteins (DEPs) between wild-type (WT) and APP/APS1 mice were measured and compared using label-free quantitative proteomics, and related signaling pathways were identified. For validation, we performed a series of in vitro tests, including an assessment of cell viability, apoptosis assay, quantitative real-time polymerase chain reaction, and western blotting. RESULTS: In the Morris water maze and nesting experiments, PGG-treated WT mice exhibited significantly improved learning and memory. The structures of 171 glycoprotein fragments in PGG matched the credible score, and typical structures were identified using LC/MS data analysis. According to the proteomic analysis results, 188 DEPs were detected between the model and administration groups, and two downregulated DEPs were related to the Notch signaling pathway. Based on the in vitro verification tests, PGG significantly inhibited the expression of key proteins in the Notch signaling pathway in microglia. CONCLUSIONS: PGG could prevent the development of neuroinflammation by inhibiting excessive activation of the Notch signaling pathway, thereby inhibiting neuroapoptosis.


Asunto(s)
Panax , Ratones , Animales , Panax/química , Proteómica , Cromatografía Liquida , Espectrometría de Masas/métodos , Glicoproteínas , Transducción de Señal
8.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3233-3241, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35851116

RESUMEN

Following the preparation of Acanthopanax senticosus total saponins microemulsion, the formulation and preparation technology were optimized and the quality was evaluated. The absorption characteristics of A. senticosus total saponins microemulsion by the self-microemulsifying drug delivery system(SMEDDS) were investigated in the unidirectional intestinal perfusion model in vivo. The oil phase, mass ratio(K_m), number of revolutions, and drug concentration were subjected to single-factor investigation with the area of pseudo-ternary phase diagram as the index. The process was optimized by D-optimal mixture design with the particle size as the index, and then the appearance, morphology, and particle size were investigated. The mass concentrations of eleutherosides B and E in the microemulsion were determined. The results showed that the optimum formulation of A. senticosus total saponins microemulsion was determined as follows: 20.8% of water phase, 31.2% of isopropyl palmitate, and 48.0% of soybean phospholipid and absolute ethanol(K_m=1∶1). As revealed by the observation under a transmission electron microscope, the microemulsion exhibited homogeneous dispersion and was a spherical emulsion droplet in the water-in-oil type. At room temperature, the pH value was 5.19, the refractive index 1.416 5, the average particle size(26.47±0.04)nm, and the polydispersity index(PDI) 0.118±0.03. The content of the eleutherosides B and E was 0.038 9 and 0.166 4 mg·mL~(-1), respectively. The preliminary stability study showed that the solution was clear and transparent within 30 d, without stratification or content change, indicating good stability. The absorption of microemulsion in each intestinal segment was significantly improved as compared with that of the A. senticosus total saponins, with the best absorption effect detected in the ileum, which has laid a foundation for further development and utilization of A. senticosus.


Asunto(s)
Eleutherococcus , Saponinas , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Absorción Intestinal , Tamaño de la Partícula , Solubilidad , Tecnología , Agua
9.
Front Bioeng Biotechnol ; 10: 874827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464721

RESUMEN

Ginsenosides are the principal bioactive compounds of ginseng. Total ginsenosides (GS) contain a variety of saponin monomers, which have potent anti-photoaging activity and improve the skin barrier function. To enhance the efficiency of GS transdermal absorption, GS liposomes (GSLs) and GS niosomes (GSNs) were formulated as delivery vehicles. Based on the clarified and optimized formulation process, GSL and GSN were prepared. The structure, cumulative transmittance, skin retention, total transmittance, and bioactivity of GSLs and GSNs were characterized. GSL and GSN were shown to inhibit lipid peroxidation and increase the contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in human keratinocytes (HaCaTs). In addition, HaCAT cell migration, proliferation, and GS cellular uptake were significantly increased. The therapeutic effects of GSL and GSN were also evaluated in a rat model of photoaging. Histopathological changes were assessed in rat skin treated with GSL, GSN, or GS by hematoxylin-eosin (H&E) and aldehyde fuchsine staining. Malondialdehyde (MDA), SOD, GSH-Px, matrix metalloproteinases (MMPs), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) expression levels were determined. Results indicated that the optimal formulation of GSL used soybean lecithin (SPC) as the phospholipid, with a lipid-drug ratio of 1:0.4 and a phospholipid-cholesterol ratio of 1:3.5. The optimal temperature for the preparation process of GSN by ethanol injection was 65°C, with a ratio of the organic phase to aqueous phase of 1:9. It was demonstrated that the cumulative release rate, skin retention rate, and total transmission rate of GSL-7 at 24 h were higher than those of GSN-4 and GS. GSL-7 significantly inhibited skin lipid peroxidation caused by ultraviolet (UV) radiation. In addition, GSL-7 reduced the contents of MMPs and inflammatory cytokines in skin tissue. In conclusion, GSL-7 may reduce skin aging caused by UV radiation and contribute to skin tissue repair.

10.
J Ethnopharmacol ; 289: 115034, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35092825

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleurum chinense DC. (B. chinense) is the dried root of B. chinense, belonging to the Umbelliferae family. B. chinense has been reported since ancient times for its effect of soothing the liver and relieving depression. Additionally, its important role in treating depression, depressed mood disorders and anti-inflammation has been proven in previous studies. However, its specific mechanism of action remains unknown. AIM OF THE STUDY: The key targets and metabolites of the antidepressant effect of B. chinense were investigated based on the cAMP signalling pathway. The study examined the mechanism for the antidepressant effect of B. chinense by target prediction, analysis of related metabolites and potential metabolic pathways. MATERIALS AND METHODS: A network pharmacology approach was used to predict the antidepressant targets and pathways of B. chinense. A depression rat model was established through the CUMS (chronic unpredictable mild stress) procedure. The depression model was assessed by body weight, sugar-water preference, water maze and enzyme-linked immunosorbent assay (ELISA) indicators (5hydroxytryptamine, etc.). The key metabolic pathways were screened by correlations between metabolites and key targets. Finally, a quantitative analysis of key targets and metabolites was experimentally validated. RESULTS: B. chinense significantly ameliorated the reduction in body weight, sugar-water preference rate and cognitive performance in the water maze experiment in rats with depression induced by CUMS. ELISA, Western blotting (WB) and reverse transcription-polymerase chain reaction (RT-PCR) assays showed that B. chinense significantly improves the expression of protein kinase cyclic adenylic acid (cAMP)-activated catalytic subunit alpha (PRKACA), cAMP-response element-binding protein (CREB) and cAMP activation in the rat brain induced by CUMS. According to metabolic pathway analysis, B. chinense shows an antidepressant effect primarily by regulating the cAMP metabolic pathway. CONCLUSION: B. chinense upregulated PRKACA and CREB expression and the level of the key metabolite cAMP in the cAMP/PKA/CREB pathway while reducing the inflammatory response to depression treatment. These new findings support future research on the antidepressant effects of B. chinense.


Asunto(s)
Antidepresivos/farmacología , Bupleurum/química , Depresión/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Regulación hacia Arriba/efectos de los fármacos
11.
Front Pharmacol ; 13: 1074397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588689

RESUMEN

Alzheimer's disease (AD) is a serious public health issue but few drugs are currently available for the disease, and these only target the symptoms. It is well established that oxidative stress plays a crucial role in AD, and there is compelling evidence linking oxidative stress to ß-amyloid (Aß). An exciting source of potential new AD therapeutic medication possibilities is medicinal plants. Ginsenoside Rd (GS-Rd) is one of the main bioactive substances in ginseng extracts. In our study, we used a network pharmacology analysis to identify overlapping GS-Rd (therapeutic) and AD (disease)-relevant protein targets, gene ontology (GO) and bio-process annotation, and the KEGG pathway analysis data predicted that GS-Rd impacts multiple targets and pathways, such as the MAPK signal pathway and the JAT-STAT3 signaling pathway. We then assessed the role of GS-Rd in C. elegans and found that GS-Rd prolongs lifespan, improves resistance to heat stress, delays physical paralysis and increases oxidative stress responses. Overall, these results suggest that GS-Rd protects against the toxicity of Aß. The RNA-seq analysis revealed that GS-Rd achieves its effects by regulating gene expressions like daf-16 and skn-1, as well as by participating in many AD-related pathways like the MAPK signaling pathway. In addition, in CL4176 worms, GS-Rd decreased reactive oxygen species (ROS) levels and increased SOD activity. Additional research with transgenic worms showed that GS-Rd aided in the movement of DAF-16 from the cytoplasm to the nucleus. Taken together, the results indicate that GS-Rd significantly reduces Aß aggregation by targeting the MAPK signal pathway, induces nuclear translocation of DAF-16 to activate downstream signaling pathways and increases resistance to oxidative stress in C. elegans to protect against Aß-induced toxicity.

12.
Molecules ; 26(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34885920

RESUMEN

Ginsenoside compound K (CK) is one of the major metabolites of the bioactive ingredients in Panax ginseng, which presents excellent bioactivity and regulates the expression of important proteins. In this work, the effects of CK on G-quadruplexes (G4s) were quantitatively analyzed in the presence and absence of their complementary sequences. CK was demonstrated to facilitate the formation of G4s, and increase the quantity of G4s in the competition with duplex. Thermodynamic experiments suggested that the electrostatic interactions were important for G4 stabilization by CK. CK was further found to regulate the transcription of G4-containing templates, reduce full-length transcripts, and decrease the transcription efficiency. Our results provide new evidence for the pharmacological study of ginsenosides at the gene level.


Asunto(s)
G-Cuádruplex/efectos de los fármacos , Ginsenósidos/farmacología , Línea Celular , Ginsenósidos/química , Humanos , Modelos Moleculares , Panax/química , Termodinámica , Transcripción Genética/efectos de los fármacos
13.
Int J Biol Macromol ; 193(Pt A): 778-788, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34743938

RESUMEN

A component from ginseng in which sugars and proteins are covalently bound is named Panax ginseng glycoproteins (PGG). The contents of neutral carbohydrate, acid carbohydrate, and protein were 45.4%, 4.3% and 51.1%. The average molecular weight was 12,690 Da. The structure analysis showed that PGG had more than 1100 glycoproteins with molecular weight between 308.13 Da and 9991.52 Da, it was divided into two parts: long chain structure and short chain structure. These two parts were compared in molecular mass, number of amino acids, theoretical pI, instability index, aliphatic index and GRAVY. The in vivo distribution test of mice showed that PGG was enriched in mice testis, testicular tissue sections showed strong fluorescence signal expression on the surface of seminiferous tubules. We used cyclophosphamide (CP) to establish a mice model of oligoasthenozoospermia to investigate the anti-oligoasthenozoospermic effect of PGG. The results showed that PGG increased the levels of sex hormones T, FSH, PRL and sperm quality. Histopathology demonstrated that PGG promoted the differentiation process. The organ coefficient indicated that PGG had no obvious toxic and side effects. And the mechanism may be to affect the expression of protein levels such as p-ERK/ERK, p-AKT/AKT, Caspase-3, Bcl-2 and Bax. Therefore, PGG has the potential to develop into drugs for improving spermatogenic disorders.


Asunto(s)
Panax/metabolismo , Extractos Vegetales/farmacología , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Animales no Consanguíneos , Masculino , Ratones
14.
Food Funct ; 12(21): 10862-10874, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34617939

RESUMEN

Doxorubicin (DOX) is an effective antineoplastic drug; however, its clinical application is limited owing to the side effect of fatal heart dysfunction on its use. Panax ginseng glycoproteins have antioxidant, antiapoptotic, and anti-inflammatory properties. Thus, the aim of this study was to investigate the effects and possible action mechanisms of P. ginseng glycoproteins against DOX-induced cardiotoxicity. To this end, we used an in vitro model of DOX-treated H9C2 cells and an in vivo model of DOX-treated rats. We found that P. ginseng glycoproteins markedly increased H9C2 cell viability, decreased creatine kinase and lactate dehydrogenase levels, and improved histopathological and electrocardiogram changes in rats, protecting them from DOX-induced cardiotoxicity. Furthermore, P. ginseng glycoproteins significantly inhibited myocardial oxidative insult through adjusting the intracellular ROS, MDA, SOD, and GSH levels in vitro and in vivo. In conclusion, our data suggest that P. ginseng glycoproteins alleviated DOX-induced myocardial oxidative stress-related cardiotoxicity. This natural product could be developed as a new candidate for alleviating DOX-induced cardiotoxicity.


Asunto(s)
Doxorrubicina/toxicidad , Glicoproteínas/farmacología , Cardiopatías/inducido químicamente , Cardiopatías/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Panax/química , Animales , Antibióticos Antineoplásicos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas/química , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
15.
Front Cell Dev Biol ; 9: 635122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748122

RESUMEN

The tumor microenvironment (TME) is composed of tumor cells, blood/lymphatic vessels, the tumor stroma, and tumor-infiltrating myeloid precursors (TIMPs) as a sophisticated pathological system to provide the survival environment for tumor cells and facilitate tumor metastasis. In TME, TIMPs, mainly including tumor-associated macrophage (TAM), tumor-associated dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs), play important roles in repressing the antitumor activity of T cell or other immune cells. Therefore, targeting those cells would be one novel efficient method to retard cancer progression. Numerous studies have shown that traditional Chinese medicine (TCM) has made extensive research in tumor immunotherapy. In the review, we demonstrate that Chinese herbal medicine (CHM) and its components induce tumor cell apoptosis, directly inhibiting tumor growth and invasion. Further, we discuss that TCM regulates TME to promote effective antitumor immune response, downregulates the numbers and function of TAMs/MDSCs, and enhances the antigen presentation ability of mature DCs. We also review the therapeutic effects of TCM herbs and their ingredients on TIMPs in TME and systemically analyze the regulatory mechanisms of TCM on those cells to have a deeper understanding of TCM in tumor immunotherapy. Those investigations on TCM may provide novel ideas for cancer treatment.

16.
J Ethnopharmacol ; 268: 113586, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33212178

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (AS), previously classified as Eleutherococcus senticosus, is one of the most commonly used herbs in the Chinese materia medica. However, there is currently no comprehensive review summarising advances in AS research. AS has been used as a functional food and in various preparations since ancient times, to invigorate the liver and kidneys, replenish vitality, strengthen the bones, stimulate appetite, and improve memory. It is widely used in countries such as China, Korea, Japan, and Russia, for specific pharmacologic effects, although it contains various chemical components that ensure its broad-spectrum effect. Its chemical constituents mainly include glycosides and flavonoids. Over the past several decades, researchers worldwide have conducted systematic investigations on this herb. AS has positive pharmacological effects on the cardiovascular, central nervous, and immune systems. Representative pathways stimulated by AS are related to neuroactive ligand-receptor interactions, cancer, and phosphatidylinositol 3 kinase/protein kinase B signalling. Importantly, AS is safe and exerts no significant adverse effects at normal doses. AIM OF THE STUDY: To provide comprehensive insights into the ethnobotany, medicinal uses, chemical composition, pharmacological activity, and toxicology of AS to aid its future development and utilisation. MATERIALS AND METHODS: Information about AS was collected from various sources, including classic books about Chinese herbal medicine and scientific databases including scientific journals, books, and pharmacopoeia. We discuss the ethnopharmacology of AS from 1965 to 2020 and summarise the knowledge of AS phytochemicals, pharmacological activity, quality control, and toxicology. CONCLUSIONS: From the current literature, we conclude that AS is a promising dietary Chinese herb with various potential applications owing to its multiple therapeutic effects.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Eleutherococcus , Etnofarmacología/métodos , Medicina Tradicional China/métodos , Fitoquímicos/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/uso terapéutico , Etnofarmacología/tendencias , Humanos , Medicina Tradicional China/tendencias , Fitoquímicos/aislamiento & purificación , Fitoquímicos/uso terapéutico
17.
J Sep Sci ; 43(12): 2436-2446, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32227667

RESUMEN

Four types of middle-pressure chromatogram isolated gels are evaluated for adsorption or desorption characteristics of ginsenosides from Panax ginseng. Among them, SP207SS and SP2MGS were selected for dynamic investigations based on their static adsorption or desorption capacity of total ginsenoside. Their adsorption kinetics was better explained by pseudosecond-order model and isotherms were preferably fitted to Langmuir model. Dynamic breakthrough experiments indicated an optimum sample loading speed of 4 bed volume/h for either SP207SS or SP2MGS. Desorption speed was determined to be 2 bed volume/h according to desorption amount of total ginsenoside in their effluents. Eight ginsenosides were identified and quantified by high performance liquid chromatography-triple quadropole-mass spectrometry in total ginsenoside extract and different fractions during stepwise dynamic elution. For SP207SS, 27.62% of loaded ginsenosides was detected in 40% ethanol fraction, while 59.12% of them were found in 60% ethanol fraction. As on SP2MGS, the number went to 53.71 and 44.43%, respectively. Recovery rate of ginsenosides were calculated to 78.65% for SP207SS and 89.53% for SP2MGS, respectively. Intriguingly, content of Rg1 and Re in 40% ethanol fraction from SP207SS became 20.1 and 18.6 times higher than that in total ginsenoside extract by one-step elution, which could be leveraged for the facile enrichment of these two ginsenosides from natural sources.


Asunto(s)
Ginsenósidos/análisis , Panax/química , Adsorción , Cromatografía Líquida de Alta Presión , Geles/química , Geles/aislamiento & purificación , Presión
18.
Int J Biol Macromol ; 150: 695-704, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061699

RESUMEN

Protein from Panax ginseng can improve learning, memory, and analgesia. Here, we investigated a fluorescence labeling method that can be used to determine the in vivo distribution of P. ginseng protein (PGP). High-performance liquid chromatography (HPLC) was used to define the amino acid composition and molecular weight of PGP; LC-MS/MS was used to identify the PGP structure, which was fluorescently-labeled using a fluorescein isothiocyanate (FITC) probe. The connection form of the PGP fluorescent marker (PGP-FITC) was identified by ultraviolet and infrared spectrophotometry. The in vivo distribution of PGP was observed by fluorescence imaging, and tissue content was determined. Results showed that PGP was enriched in the brain and that vascular epithelial cells showed specific uptake. We provide an experimental method to label and identify the in vivo distribution of PGP, which forms the basis for future studies to determine whether PGP can penetrate the blood-brain barrier (BBB) and elucidate the transport mechanism.


Asunto(s)
Panax/química , Proteínas de Plantas , Animales , Cromatografía Liquida , Ratones , Proteínas de Plantas/química , Proteínas de Plantas/farmacocinética , Proteínas de Plantas/farmacología , Conformación Proteica , Espectrometría de Masas en Tándem
19.
Front Microbiol ; 11: 610070, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414777

RESUMEN

Antibiotic resistance is becoming significantly prominent and urgent in clinical practice with the increasing and wide application of antibacterial drugs. However, developing and synthesizing new antimicrobial drugs is costly and time-consuming. Recently, researchers shifted their sights to traditional Chinese medicine (TCM). Here, we summarized the inhibitory mechanism of TCM herbs and their active ingredients on bacteria, discussed the regulatory mechanism of TCM on antibiotic-resistant bacteria, and revealed preclinical results of TCM herbs and their active components against antibiotic-resistant bacteria in mouse models. Those data suggest that TCM herbs and their effective constituents exhibit potential blockage ability on antibiotic-resistant bacteria, providing novel therapeutic ideas for reversing antibiotic resistance.

20.
Front Oncol ; 10: 634936, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33680956

RESUMEN

Cancer has become the second leading cause of death worldwide; however, its complex pathogenesis remains largely unclear. Previous research has shown that cancer development and progression are closely associated with various non-coding RNAs, including long non-coding RNAs and microRNAs, which regulate gene expression. Target gene abnormalities are regulated and engaged in the complex mechanism underlying tumor formation, thereby controlling apoptosis, invasion, and migration of tumor cells and providing potentially effective targets for the treatment of malignant tumors. Chemotherapy is a commonly used therapeutic strategy for cancer; however, its effectiveness is limited by general toxicity and tumor cell drug resistance. Therefore, increasing attention has been paid to developing new cancer treatment modalities using traditional Chinese medicines, which exert regulatory effects on multiple components, targets, and pathways. Several active ingredients in Chinese medicine, including ginsenoside, baicalin, and matrine have been found to regulate ncRNA expression levels, thus, exerting anti-tumor effects. This review summarizes the scientific progress made regarding the anti-tumor mechanisms elicited by various active ingredients of Chinese medicine in regulating non-coding RNAs, to provide a theoretical foundation for treating tumors using traditional Chinese medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA