Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 12(11)2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34828373

RESUMEN

Molting in birds provides us with an ideal genetic model for understanding aging and rejuvenation since birds present younger characteristics for reproduction and appearance after molting. Forced molting (FM) by fasting in chickens causes aging of their reproductive system and then promotes cell redevelopment by providing water and feed again. To reveal the genetic mechanism of rejuvenation, we detected blood hormone indexes and gene expression levels in the hypothalamus and ovary of hens from five different periods during FM. Three hormones were identified as participating in FM. Furthermore, the variation trends of gene expression levels in the hypothalamus and ovary at five different stages were found to be basically similar using transcriptome analysis. Among them, 45 genes were found to regulate cell aging during fasting stress and 12 genes were found to promote cell development during the recovery period in the hypothalamus. In addition, five hub genes (INO80D, HELZ, AGO4, ROCK2, and RFX7) were identified by WGCNA. FM can restart the reproductive function of aged hens by regulating expression levels of genes associated with aging and development. Our study not only enriches the theoretical basis of FM but also provides insights for the study of antiaging in humans and the conception mechanism in elderly women.


Asunto(s)
Envejecimiento/genética , Proteínas Aviares/genética , Pollos/fisiología , Muda , Animales , Senescencia Celular , Pollos/sangre , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hormonas/sangre , Hipotálamo/química , Ovario/química
2.
Front Microbiol ; 12: 633276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815314

RESUMEN

This study aimed to investigate the effects of dietary yeast culture (YC) supplementation on egg production, egg quality, reproductive performance, immune functions, antioxidant capacity, and intestinal microbial structure of aged hens. A total of 224 Hy-Line Brown layers (54 weeks old) were randomly assigned to two dietary treatments. The control group was fed a basal diet and the YC group was supplemented with YC at 2.0 g/kg of their diet. Each group had seven replicates with 16 hens each. The study was conducted over a period of 8 weeks. Results indicated that YC addition had no significant effect on laying performance. However, it significantly improved egg quality and hatching rate, enhanced ileum crude fat digestibility, increased the serum parameters of lysozyme (LZM) and total antioxidation capacity (T-AOC) (P < 0.05), and reduced serum aspartate aminotransferase (AST) levels (P < 0.05). Using 16S rRNA analysis, we found that addition of YC significantly altered ileum microbial composition. Linear discriminant analysis of effect size (LEfSe) showed significant enrichment of Bacilli and Lactobacilli in the YC group. PICRUSt analysis of the ileal microbiota found that glutathione metabolism, ubiquinone, and other terpenoid-quinone biosynthesis and lipopolysaccharide biosynthesis protein pathways were highly enriched in the YC group compared with the basal diet group. In summary, the addition of YC can improve egg quality, immune functions, antioxidant capacity, reproduction efficiency, and digestive absorption by increasing the abundance of Lactobacilli and Bacilli. Furthermore, it also improves the biosynthesis of lipopolysaccharide proteins, glutathione metabolism, and the synthesis of ubiquinone and other terpenoid-quinone metabolic pathways.

3.
Genes (Basel) ; 13(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35052428

RESUMEN

Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.


Asunto(s)
Proteínas Aviares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormonas/sangre , Hipotálamo/metabolismo , Muda/fisiología , Ovario/metabolismo , Transcriptoma , Envejecimiento , Animales , Proteínas Aviares/genética , Pollos , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Femenino , Perfilación de la Expresión Génica , Hipotálamo/crecimiento & desarrollo , Ovario/crecimiento & desarrollo
4.
Poult Sci ; 92(12): 3113-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24235219

RESUMEN

The chicken major histocompatibility complex (MHC) has abundant SNP and indels, and is closely related with host genetic resistance or susceptibility to disease. The LEI0258 locus is the most variable in the MHC region, and is a useful marker in reflecting the variability of MHC. In this study, we applied the LEI0258 microsatellite marker to investigate polymorphism of MHC in Chinese indigenous chickens. The size of LEI0258 fragments in 1,617 individuals from 33 Chinese chicken breeds was detected by capillary electrophoresis, and 213 samples with different fragment sizes were further sequenced. A total of 69 alleles ranging from 193 to 489 bp were found, including 21 novel alleles and 28 private alleles that existed in only one breed. Three alleles, 249 bp (7.04%), 489 bp (6.57%), and 309 bp (6.10%), were the most frequent in the indigenous chickens. A 489-bp novel allele was unique in Chinese local chicken breeds. Three indels and 4 SNP of upstream/downstream of 2 repeat regions (R13/R12) were found. Abundant variations indicate high genetic diversity at the MHC region in indigenous chickens. Rare alleles are vulnerable to genetic drift in small populations, and can be used as molecular markers for monitoring the dynamic conservation of many indigenous breeds.


Asunto(s)
Pollos/genética , Complejo Mayor de Histocompatibilidad , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Alelos , Animales , China , Marcadores Genéticos , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Secuencia de ADN/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA