Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 14(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364913

RESUMEN

Ischemic heart disease (IHD) and type-2 diabetes mellitus (T2DM) remain major health problems worldwide and commonly coexist in individuals. Gut microbial metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs), have been linked to cardiovascular and metabolic diseases. Previous studies have reported dysbiosis in the gut microbiota of these patients and the prebiotic effects of some components of the Mediterranean diet. Essential oil emulsions of savory (Satureja hortensis), parsley (Petroselinum crispum) and rosemary (Rosmarinus officinalis) were assessed as nutraceuticals and prebiotics in IHD and T2DM. Humanized mice harboring gut microbiota derived from that of patients with IHD and T2DM were supplemented with L-carnitine and orally treated with essential oil emulsions for 40 days. We assessed the effects on gut microbiota composition and abundance, microbial metabolites and plasma markers of cardiovascular disease, inflammation and oxidative stress. Our results showed that essential oil emulsions in mice supplemented with L-carnitine have prebiotic effects on beneficial commensal bacteria, mainly Lactobacillus genus. There was a decrease in plasma TMAO and an increase in fecal SCFAs levels in mice treated with parsley and rosemary essential oils. Thrombomodulin levels were increased in mice treated with savory and parsley essential oils. While mice treated with parsley and rosemary essential oils showed a decrease in plasma cytokines (INFÉ£, TNFα, IL-12p70 and IL-22); savory essential oil was associated with increased levels of chemokines (CXCL1, CCL2 and CCL11). Finally, there was a decrease in protein carbonyls and pentosidine according to the essential oil emulsion. These results suggest that changes in the gut microbiota induced by essential oils of parsley, savory and rosemary as prebiotics could differentially regulate cardiovascular and metabolic factors, which highlights the potential of these nutraceuticals for reducing IHD risk in patients affected by T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta Mediterránea , Microbioma Gastrointestinal , Isquemia Miocárdica , Aceites Volátiles , Rosmarinus , Ratones , Animales , Prebióticos , Emulsiones/farmacología , Ácidos Grasos Volátiles/metabolismo , Aceites Volátiles/farmacología , Carnitina/farmacología
2.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233289

RESUMEN

Gut microbiome (GM) and its either pro-tumorigenic or anti-tumorigenic role is intriguing and constitutes an evolving landscape in translational oncology. It has been suggested that these microorganisms may be involved in carcinogenesis, cancer treatment response and resistance, as well as predisposition to adverse effects. In melanoma patients, one of the most immunogenic cancers, immune checkpoint inhibitors (ICI) and MAPK-targeted therapy-BRAF/MEK inhibitors-have revolutionized prognosis, and the study of the microbiome as a modulating factor is thus appealing. Although BRAF/MEK inhibitors constitute one of the main backbones of treatment in melanoma, little is known about their impact on GM and how this might correlate with immune re-induction. On the contrary, ICI and their relationship to GM has become an interesting field of research due to the already-known impact of immunotherapy in modulating the immune system. Immune reprogramming in the tumor microenvironment has been established as one of the main targets of microbiome, since it can induce immunosuppressive phenotypes, promote inflammatory responses or conduct anti-tumor responses. As a result, ongoing clinical trials are evaluating the role of fecal microbiota transplant (FMT), as well as the impact of using dietary supplements, antibiotics and probiotics in the prediction of response to therapy. In this review, we provide an overview of GM's link to cancer, its relationship with the immune system and how this may impact response to treatments in melanoma patients. We also discuss insights about novel therapeutic approaches including FMT, changes in diet and use of probiotics, prebiotics and symbiotics. Finally, we hypothesize on the possible pathways through which GM may impact anti-tumor efficacy in melanoma patients treated with targeted therapy, an appealing subject of which little is known.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Neoplasias Primarias Secundarias , Antibacterianos/uso terapéutico , Trasplante de Microbiota Fecal , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Melanoma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos , Neoplasias Primarias Secundarias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA