RESUMEN
This study was done to investigate the possible nephroprotective effect of an ethanolic root extract of Polyalthia Longifolia (PL) on vancomycin-induced nephrotoxicity using curative and protective models. Vancomycin (150 mg/kg, intravenous) was given to healthy Wistar albino rats in the curative model before the start of treatment, whereas the protective group received vancomycin at the conclusion of the 10-day treatment procedure. Animals were divided into six groups for both models; group I served as the normal control, while groups II, III, IV, V, and VI were kept as toxic control, standard (selenium, 6 mg/kg), LDPL (low dose of PL 200 mg/kg), HDPL (high dose of PL 400 mg/kg), and HDPL + selenium (interactive) groups, respectively. Renal biomarkers [(uric acid, creatinine, blood urea nitrogen (BUN), serum proteins], and blood electrolyte levels were measured for all tested groups. When compared to the vancomycin group, the HDPL significantly (p < 0.01) showed greater effectiveness in lowering the BUN, potassium, and calcium levels. Additionally, in the curative model, there was a significant (p < 0.05) decrease in the blood levels of uric acid, creatinine, BUN, potassium, and calcium in the animals who received the combination of selenium and HDPL. Both LDPL and HDPL did not provide any distinguishable effect in the protective model, but groups that received HDPL with selenium did provide detectable protection by significantly lowering their levels of uric acid, BUN, serum potassium, and total serum protein in comparison to the vancomycin control group. These findings indicate that, whether administered before or after renal damage is induced, the Polyalthia longifolia root extract provided only modest protection to nephrons, which require selenium support to prevent vancomycin-induced kidney damage.
RESUMEN
Background and Objective: In 2019, a novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) was declared pandemic. Advancement in computational technology has provided rapid and cost-effective techniques to test the efficacy of newer therapeutic agents. This study evaluated some of the potent phytochemicals obtained from AYUSH (Ayurveda, Yoga, Naturopathy, Unani, Siddha, Sowa-Rigpa, and Homeopathy)-listed medicinal plants against SARS-CoV-2 proteins using computational techniques. Materials and methods: The potential SARS-CoV-2 protein targets were utilized to study the ligand-protein binding characteristics. The bioactive agents were obtained from ashwagandha, liquorice, amla, neem, tinospora, pepper, and stevia. Ivermectin was utilized as a reference agent to compare its efficacy with phytochemicals. Results: The computational analysis suggested that all the bioactive components from the selected plants possessed negative docking scores (ranging from -6.24 to -10.53). The phytoconstituents were well absorbed, distributed in the body except for the CNS, metabolized by liver enzymes, well cleared from the body, and well tolerated. The data suggest that AYUSH-recommended plants demonstrated therapeutic efficacy against SARS CoV-2 virus infection with significantly reduced toxicity. Conclusion: The phytoconstituents were found to hinder the early stages of infection, such as absorption and penetration, while ivermectin prevented the passage of genetic material from the cytoplasm to the nucleus. Additional research involving living tissues and clinical trials are suggested to corroborate the computational findings.
RESUMEN
Background: Constipation is a common functional gastrointestinal disorder. Medicines derived from nature are routinely used to treat it. The present study evaluates the gut stimulatory activity of Aloe musabbar (processed powder of Aloe vera) using in vitro and in vivo models for gut stimulatory activity. Materials and Methods: In vitro tests were conducted on isolated rat colon, guinea pig ileum, and rabbit jejunum, while in vivo study was performed using mice intestinal transit time. Aloe musabbar (A. musabbar) was tested at doses 0.2-200 mg/mL (in-vitro study) and 86.6 mg/kg (in vivo study). In vitro studies were done in the presence and absence of atropine sulphate (1 ng/ml). The results were statistically analyzed, and p < 0.05 was considered to indicate the significance. Results: A. musabbar exhibited dose-dependent increase in the smooth muscle contraction of isolated gut tissues. Presence of atropine minimized the contractile responses and shifted the dose-response curves towards the right-hand side. The intestinal transit time in mice was observed to be increased significantly (p < 0.01) in A. musabbar-treated animals, when compared with normal animals. Conclusion: A mild smooth muscle contraction induced by A. musabbar suggests that it can stimulate intestinal bowel movement without causing spasms. The diminished responses in the presence of atropine indicated that the gut stimulatory activity could be mediated partially through parasympathetic innervations. More studies are needed to determine the precise mechanism of action including the specific active ingredient responsible for the gut stimulatory activity.
RESUMEN
Terminalia chebula (T.chebula) fruit is referred as "King of Medicines" in Tibet and is listed as a key plant in "Ayurvedic Materia Medica" due to its diverse pharmacological activity. The present study was aimed to investigate the comorbid antidepressant-like and anxiolytic-like effects of ethanol extract from T.chebula fruit using experimental behavioral tests in mice. In addition, the study explored the effects of extract on monoamine oxidase -A (MAO-A) levels in mouse brain. Two doses of the T.chebula extract (100 or 200 mg/kg, p.o.) were treated continuously for fifteen days to mice. Regarding antidepressant-like effects, the treatment of T.chebula extract at both dose (100 or 200 mg/kg, p.o.) levels resulted with significant (p < 0.001) reduction in duration of immobility time and increase in swimming time as compared to control group in forced swimming test. Moreover, both doses declined the duration of immobility time in the tail suspension test and increased the number of crossing in the center area using open-field test. Additionally, the dose 200 mg/kg treatment showed a significant reduction (p < 0.05) in MAO-A activity in mouse brain. For anxiolytic activity, both doses significantly (p < 0.001) improved the time spent in open arm and the number of head dips in elevated plus maze test. The higher duration of time spent in light chamber and higher number of crossing between the light and dark chambers by extract treatment in light-dark box test also supported the anxiolytic behavior. The obtained results supported the antidepressant-like and anxiolytic-like effects of ethanol extract of T.chebula in mice.
RESUMEN
Cytogenetic analysis is essential to determine the effect of mutagens and antimutagens on genetic material. This study was done to evaluate the protective effect of root bark extract of Morus alba (M. alba) against cyclophosphamide induced somatic and germinal cell damage in male rats. The ethanolic extract of M. alba (0.25, 0.5 and 1 g/kg, 2 weeks) was evaluated against cyclophosphamide (75 mg/kg, single dose) induced nuclear damage. The sampling was done after 48 h of the clastogen treatment. The somatic and germinal nuclear damage was studied by bone marrow micronucleus and sperm analysis, respectively. Serum superoxide and catalase levels were estimated to determine the antioxidant status in each group. The results were analyzed statistically to find the significant variation. The administration of M. alba for 2 weeks suppressed dose-dependently the changes induced by cyclophosphamide. M. alba (0.5 g/kg) decreased the frequency of micronucleated erythrocyte, sperm shape abnormality and enhanced the sperm count, sperm motility and polychromatic-normochromatic erythrocytes ratio significantly (p < 0.05) in comparison with the cyclophosphamide treated group. The highest tested dose of M. alba (1 g/kg) produced more prominent suppression (p < 0.01) in the cyclophosphamide-induced somatic and germinal cell defects. The results also showed significant (p < 0.05) improvement in the serum antioxidant enzymes levels with M. alba when compared with the challenge group. The lower dose of M. alba extract (0.25 g/kg) prevented the CP-induced changes but was found to be statistically insignificant. Therefore, antimutagenic potential of the high dose of the extract of M. alba is possibly due to its antioxidant nature. The ability of the M. alba extract to prevent the nuclear damage could play an important role in overcoming several mutational defects that are associated with anticancer chemotherapy.
Asunto(s)
Antioxidantes/farmacología , Morus/química , Extractos Vegetales/farmacología , Motilidad Espermática/efectos de los fármacos , Animales , Antimutagênicos/química , Antimutagênicos/farmacología , Antioxidantes/química , Ciclofosfamida/toxicidad , Etanol/química , Humanos , Masculino , Mutágenos/toxicidad , Extractos Vegetales/química , RatasRESUMEN
Citral is a major component of Cymbopogon citratus (lemongrass oil). The aqueous suspension of citral (60 mg/kg body weight, per oral) treated for one week was tested for the anti-clastogenic effect using mouse micronucleus test system. A known mutagen nickel (Nickel chloride-10 mg/kg, b.w. intra-peritoneal) was used to induce the nuclear damage measured in polychromatic erythrocytes and normochromatic erythrocytes. The frequency of the micronucleated erythrocytes were studied in peripheral blood and bone marrow after 24, 48 and 72 hours of mutagenic exposure. The antioxidant activity of citral was tested in vitro by superoxide scavenging method. The results indicated that citral significantly (P<0.01) inhibited the formation of micronuclei induced by nickel. Further, a good superoxide scavenging activity (EC50=19 mcg/ml) was observed in citral treated groups, suggesting that the antioxidant action could be responsible for the anti-clastogenic effect of citral against nickel chloride.