Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Science ; 349(6250): aab3884, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26198033

RESUMEN

How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.


Asunto(s)
Migración Humana/historia , Indígenas Norteamericanos/historia , Américas , Flujo Génico , Genómica , Historia Antigua , Humanos , Indígenas Norteamericanos/genética , Modelos Genéticos , Siberia
2.
PLoS One ; 9(10): e110839, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25337992

RESUMEN

While numerous ancient human DNA datasets from across Europe have been published till date, modern-day Poland in particular, remains uninvestigated. Besides application in the reconstruction of continent-wide human history, data from this region would also contribute towards our understanding of the history of the Slavs, whose origin is hypothesized to be in East or Central Europe. Here, we present the first population-scale ancient human DNA study from the region of modern-day Poland by establishing mitochondrial DNA profiles for 23 samples dated to 200 BC - 500 AD (Roman Iron Age) and for 20 samples dated to 1000-1400 AD (Medieval Age). Our results show that mitochondrial DNA sequences from both periods belong to haplogroups that are characteristic of contemporary West Eurasia. Haplotype sharing analysis indicates that majority of the ancient haplotypes are widespread in some modern Europeans, including Poles. Notably, the Roman Iron Age samples share more rare haplotypes with Central and Northeast Europeans, whereas the Medieval Age samples share more rare haplotypes with East-Central and South-East Europeans, primarily Slavic populations. Our data demonstrates genetic continuity of certain matrilineages (H5a1 and N1a1a2) in the area of present-day Poland from at least the Roman Iron Age until present. As such, the maternal gene pool of present-day Poles, Czechs and Slovaks, categorized as Western Slavs, is likely to have descended from inhabitants of East-Central Europe during the Roman Iron Age.


Asunto(s)
ADN Mitocondrial/genética , Haplotipos , Población Blanca/genética , Secuencia de Bases , Secuencia de Consenso , Femenino , Historia Antigua , Humanos , Filogenia , Polonia , Análisis de Secuencia de ADN
3.
Science ; 345(6200): 1255832, 2014 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-25170159

RESUMEN

The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.


Asunto(s)
Genoma Humano/genética , Migración Humana , Inuk/genética , Alaska/etnología , Regiones Árticas/etnología , Secuencia de Bases , Huesos , Canadá/etnología , ADN Mitocondrial/genética , Groenlandia/etnología , Cabello , Historia Antigua , Humanos , Inuk/etnología , Inuk/historia , Datos de Secuencia Molecular , Siberia/etnología , Sobrevivientes/historia , Diente
4.
Science ; 344(6185): 747-50, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24762536

RESUMEN

Prehistoric population structure associated with the transition to an agricultural lifestyle in Europe remains a contentious idea. Population-genomic data from 11 Scandinavian Stone Age human remains suggest that hunter-gatherers had lower genetic diversity than that of farmers. Despite their close geographical proximity, the genetic differentiation between the two Stone Age groups was greater than that observed among extant European populations. Additionally, the Scandinavian Neolithic farmers exhibited a greater degree of hunter-gatherer-related admixture than that of the Tyrolean Iceman, who also originated from a farming context. In contrast, Scandinavian hunter-gatherers displayed no significant evidence of introgression from farmers. Our findings suggest that Stone Age foraging groups were historically in low numbers, likely owing to oscillating living conditions or restricted carrying capacity, and that they were partially incorporated into expanding farming groups.


Asunto(s)
Agricultura/historia , ADN Mitocondrial/genética , Variación Genética , Genoma Humano , Población Blanca/genética , ADN Mitocondrial/historia , Genómica , Historia Antigua , Humanos , Países Escandinavos y Nórdicos , Población Blanca/historia
5.
Science ; 336(6080): 466-9, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22539720

RESUMEN

The farming way of life originated in the Near East some 11,000 years ago and had reached most of the European continent 5000 years later. However, the impact of the agricultural revolution on demography and patterns of genomic variation in Europe remains unknown. We obtained 249 million base pairs of genomic DNA from ~5000-year-old remains of three hunter-gatherers and one farmer excavated in Scandinavia and find that the farmer is genetically most similar to extant southern Europeans, contrasting sharply to the hunter-gatherers, whose distinct genetic signature is most similar to that of extant northern Europeans. Our results suggest that migration from southern Europe catalyzed the spread of agriculture and that admixture in the wake of this expansion eventually shaped the genomic landscape of modern-day Europe.


Asunto(s)
Agricultura/historia , Variación Genética , Genoma Humano , Población Blanca/genética , Entierro , ADN Mitocondrial/genética , Demografía , Emigración e Inmigración/historia , Haplotipos , Historia Antigua , Humanos , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Análisis de Componente Principal , Análisis de Secuencia de ADN , Suecia , Población Blanca/historia
6.
Rapid Commun Mass Spectrom ; 24(5): 541-8, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20131322

RESUMEN

We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used as a proxy for bone collagen at the amino acid level, this validates compound-specific isotope studies using hair as a model for palaeodietary reconstruction. Our results suggest that a small offset observed in the bulk delta(13)C values of the hair and bone samples may be attributed to two factors: (i) amino acid compositional differences between hair and bone proteins, and (ii) differential turnover rates of the tissues and the amino acid pools contributing to their synthesis. This application proposes that hair may be a useful complementary or alternative source of compound-specific paleodietary information.


Asunto(s)
Aminoácidos/química , Huesos/química , Cromatografía Liquida/métodos , Colágeno/química , Queratinas Específicas del Pelo/química , Espectrometría de Masas/métodos , Momias , Isótopos de Carbono/análisis , Dieta , Humanos
7.
Nature ; 463(7282): 757-62, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20148029

RESUMEN

We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit.


Asunto(s)
Criopreservación , Extinción Biológica , Genoma Humano/genética , Inuk/genética , Emigración e Inmigración/historia , Genética de Población , Genómica , Genotipo , Groenlandia , Cabello , Historia Antigua , Humanos , Masculino , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Siberia/etnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA