Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 241: 118428, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34311066

RESUMEN

Visual imagery relies on a widespread network of brain regions, partly engaged during the perception of external stimuli. Beyond the recruitment of category-selective areas (FFA, PPA), perception of familiar faces and places has been reported to engage brain areas associated with semantic information, comprising the precuneus, temporo-parietal junction (TPJ), medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). Here we used multivariate pattern analyzes (MVPA) to examine to which degree areas of the visual imagery network, category-selective and semantic areas contain information regarding the category and familiarity of imagined stimuli. Participants were instructed via auditory cues to imagine personally familiar and unfamiliar stimuli (i.e. faces and places). Using region-of-interest (ROI)-based MVPA, we were able to distinguish between imagined faces and places within nodes of the visual imagery network (V1, SPL, aIPS), within category-selective inferotemporal regions (FFA, PPA) and across all brain regions of the extended semantic network (i.e. precuneus, mPFC, IFG and TPJ). Moreover, we were able to decode familiarity of imagined stimuli in the SPL and aIPS, and in some regions of the extended semantic network (in particular, right precuneus, right TPJ), but not in V1. Our results suggest that posterior visual areas - including V1 - host categorical representations about imagined stimuli, and that stimulus familiarity might be an additional aspect that is shared between perception and visual imagery.


Asunto(s)
Encéfalo/fisiología , Imaginación/fisiología , Red Nerviosa/fisiología , Reconocimiento Visual de Modelos/fisiología , Reconocimiento en Psicología/fisiología , Estimulación Acústica/métodos , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Estimulación Luminosa/métodos , Distribución Aleatoria , Percepción Visual/fisiología , Adulto Joven
2.
Cortex ; 127: 371-387, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32289581

RESUMEN

In the absence of input from the external world, humans are still able to generate vivid mental images. This cognitive process, known as visual mental imagery, involves a network of prefrontal, parietal, inferotemporal, and occipital regions. Using multivariate pattern analysis (MVPA), previous studies were able to distinguish between the different orientations of imagined gratings, but not between more complex imagined stimuli, such as common objects, in early visual cortex (V1). Here we asked whether letters, simple shapes, and objects can be decoded in early visual areas during visual mental imagery. In a delayed spatial judgment task, we asked participants to observe or imagine stimuli. To examine whether it is possible to discriminate between neural patterns during perception and visual mental imagery, we performed ROI-based and whole-brain searchlight-based MVPA. We were able to decode imagined stimuli in early visual (V1, V2), parietal (SPL, IPL, aIPS), inferotemporal (LOC) and prefrontal (PMd) areas. In a subset of these areas (i.e., V1, V2, LOC, SPL, IPL and aIPS), we also obtained significant cross-decoding across visual imagery and perception. Moreover, we observed a linear relationship between behavioral accuracy and the amplitude of the BOLD signal in parietal and inferotemporal cortices, but not in early visual cortex, in line with the view that these areas contribute to the ability to perform visual imagery. Together, our results suggest that in the absence of bottom-up visual inputs, patterns of functional activation in early visual cortex allow distinguishing between different imagined stimulus exemplars, most likely mediated by signals from parietal and inferotemporal areas.


Asunto(s)
Imaginación , Imagen por Resonancia Magnética , Mapeo Encefálico , Corteza Cerebral , Humanos , Lóbulo Occipital/diagnóstico por imagen , Percepción Visual
3.
Neuroimage ; 200: 332-343, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247298

RESUMEN

Visual imagery has been suggested to recruit occipital cortex via feedback projections from fronto-parietal regions, suggesting that these feedback projections might be exploited to boost recruitment of occipital cortex by means of real-time neurofeedback. To test this prediction, we instructed a group of healthy participants to perform peripheral visual imagery while they received real-time auditory feedback based on the BOLD signal from either early visual cortex or the medial superior parietal lobe. We examined the amplitude and temporal aspects of the BOLD response in the two regions. Moreover, we compared the impact of self-rated mental focus and vividness of visual imagery on the BOLD responses in these two areas. We found that both early visual cortex and the medial superior parietal cortex are susceptible to auditory neurofeedback within a single feedback session per region. However, the signal in parietal cortex was sustained for a longer time compared to the signal in occipital cortex. Moreover, the BOLD signal in the medial superior parietal lobe was more affected by focus and vividness of the visual imagery than early visual cortex. Our results thus demonstrate that (a) participants can learn to self-regulate the BOLD signal in early visual and parietal cortex within a single session, (b) that different nodes in the visual imagery network respond differently to neurofeedback, and that (c) responses in parietal, but not in occipital cortex are susceptible to self-rated vividness of mental imagery. Together, these results suggest that medial superior parietal cortex might be a suitable candidate to provide real-time feedback to patients suffering from visual field defects.


Asunto(s)
Neuroimagen Funcional/métodos , Imaginación/fisiología , Red Nerviosa/fisiología , Neurorretroalimentación/fisiología , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA