Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Brain ; 13(1): 68, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375833

RESUMEN

Thalamic recruitment of feedforward inhibition is known to enhance the fidelity of the receptive field by limiting the temporal window during which cortical neurons integrate excitatory inputs. Feedforward inhibition driven by the mediodorsal nucleus of the thalamus (MD) has been previously observed, but its physiological function and regulation remain unknown. Accumulating evidence suggests that elevated neuronal activity in the prefrontal cortex is required for the short-term storage of information. Furthermore, the elevated neuronal activity is supported by the reciprocal connectivity between the MD and the medial prefrontal cortex (mPFC). Therefore, detailed knowledge about the synaptic connections during high-frequency activity is critical for understanding the mechanism of short-term memory. In this study, we examined how feedforward inhibition of thalamofrontal connectivity is modulated by activity frequency. We observed greater short-term synaptic depression during disynaptic inhibition than in thalamic excitatory synapses during high-frequency activities. The strength of feedforward inhibition became weaker as the stimulation continued, which, in turn, enhanced the range of firing jitter in a frequency-dependent manner. We postulated that this phenomenon was primarily due to the increased failure rate of evoking action potentials in parvalbumin-expressing inhibitory neurons. These findings suggest that the MD-mPFC pathway is dynamically regulated by an excitatory-inhibitory balance in an activity-dependent manner. During low-frequency activities, excessive excitations are inhibited, and firing is restricted to a limited temporal range by the strong feedforward inhibition. However, during high-frequency activities, such as during short-term memory, the activity can be transferred in a broader temporal range due to the decreased feedforward inhibition.


Asunto(s)
Núcleo Talámico Mediodorsal/fisiología , Corteza Prefrontal/fisiología , Transmisión Sináptica/fisiología , Tálamo/fisiología , Potenciales de Acción , Animales , Electrofisiología , Interneuronas/metabolismo , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Optogenética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Sinapsis/fisiología
2.
Front Neural Circuits ; 7: 177, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24273494

RESUMEN

The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 × 0.83 × 0.21 mm(3) volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 µm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.


Asunto(s)
Corteza Cerebral/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Tomografía/métodos , Animales , Dendritas/fisiología , Ratones , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA