Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 8(49): 47001-47011, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107893

RESUMEN

Wissadula periplocifolia (L.) Thwaites is a traditional medicinal plant belonging to the family Malvaceae, used in folk medicine for inflamed snake bites and bee stings. The current study was designed to investigate the in vitro antioxidant and in vivo anti-inflammatory and hepatoprotective activities of 80% ethanol extract of W. periplocifolia and its different fractions. The crude ethanolic extract (CEE) was then serially fractionated with petroleum ether fraction (PEF), chloroform fraction (CHF), and aqueous fraction (AQF). The antioxidant activity was assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, anti-inflammatory activity was determined in the xylene-induced ear edema model, and hepatoprotective activity was measured in the paracetamol-induced hepatic injury model. PEF showed a significant scavenging effect with an IC50 value of 33.5 µg/mL, followed by CEE (IC50 = 42.2 µg/mL), CHF (IC50 = 77 µg/mL), and AQF (IC50 = 80 µg/mL), compared to standard butylated hydroxytoluene (IC50 = 14.8 µg/mL). Both doses of CEE (250 and 500 mg/kg) could reduce ear edema by 41.3 and 50%, respectively, compared to standard diclofenac sodium (76.09%). Moreover, CEE significantly reduces the elevated liver enzymes (ALT, AST, and ALP), compared to control. Nevertheless, it elevated blood protein and reduced the blood bilirubin level (p < 0.01), compared to control. Histopathological studies also indicated significant protection of the liver from paracetamol-induced liver damage. In conclusion, W. periplocifolia could be a good source of antioxidant and hepatoprotective phytochemicals; meanwhile, toxicological and pharmacokinetic studies are recommended.

2.
Toxicol Rep ; 8: 1369-1380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34285883

RESUMEN

Bridelia tomentosa (B. tomentosa) is a traditional medicinal plant for treating diverse ailments. Hence, we designed our study to scrutinize the protective effect of the methanol extract of B. tomentosa leaf (BTL) against carbofuran-induced oxidative stress-mediated hepato-toxicity in Sprague-Dawley rats for the first time, along with the identification and quantification of phenolic acids and flavonoids by high-performance liquid chromatography (HPLC) and evaluation of antioxidant and antiradical activities of this extract. HPLC analysis confirmed the existence of tannic acid, gallic acid, salicylic acid, and naringin in B. tomentosa leaf extract which showed in-vitro antioxidant potentialities with DPPH, nitric oxide, hydrogen peroxide, and hydroxyl radical scavenging properties. Co-administration of B. tomentosa leaf extract with carbofuran showed dose-dependent significant protective effects of hepatic toxicity on serum markers such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl-transferase, lactate dehydrogenase, total bilirubin, total protein, albumin, globulin, lipid profile, urea, uric acid, and creatinine. Carbofuran intoxication also revealed an upsurge in malondialdehyde (MDA) and a decline in cellular endogenous antioxidant enzyme levels in rats compared with the control group. However, B. tomentosa leaf extract co-treatment increased the levels of hepatic antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and amended the MDA level. Similarly, histopathological evaluation further assured that BTL could keep the hepatocyte from carbofuran-induced damage. Therefore, all of our findings may conclude that the phenolic acids and flavonoids of B. tomentosa leaf extract are responsible to neutralize the toxic free radical-mediated oxidative hepatic damages.

3.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 243-249, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32583783

RESUMEN

Phytol (PHY), a chlorophyll-derived diterpenoid, exhibits numerous pharmacological properties, including antioxidant, antimicrobial, and anticancer activities. This study evaluates the anti-diarrheal effect of phytol (PHY) along with its possible mechanism of action through in-vivo and in-silico models. The effect of PHY was investigated on castor oil-induced diarrhea in Swiss mice by using prazosin, propranolol, loperamide, and nifedipine as standards with or without PHY. PHY at 50 mg/kg (p.o.) and all other standards exhibit significant (p < 0.05) anti-diarrheal effect in mice. The effect was prominent in the loperamide and propranolol groups. PHY co-treated with prazosin and propranolol was found to increase in latent periods along with a significant reduction in diarrheal section during the observation period than other individual or combined groups. Furthermore, molecular docking studies also suggested that PHY showed better interactions with the α- and ß-adrenergic receptors, especially with α-ADR1a and ß-ADR1. In the former case, PHY showed interaction with hydroxyl group of Ser192 at a distance of 2.91Å, while in the latter it showed hydrogen bond interactions with Thr170 and Lys297 with a distance of 2.65 and 2.72Å, respectively. PHY exerted significant anti-diarrheal effect in Swiss mice, possibly through blocking α- and ß-adrenergic receptors.


Asunto(s)
Simulación por Computador , Diarrea/tratamiento farmacológico , Modelos Biológicos , Fitol/uso terapéutico , Secuencia de Aminoácidos , Animales , Aceite de Ricino , Modelos Animales de Enfermedad , Ayuno , Humanos , Canales Iónicos/química , Canales Iónicos/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Fitol/farmacología , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Homología de Secuencia de Aminoácido
4.
Chem Res Toxicol ; 32(12): 2499-2508, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31696704

RESUMEN

In folk medicines, Justicia gendarussa (J. gendarussa) is used as a depurative herb for treating fever, pain, and cancer and as laxative for constipation. The aim of the present investigation was to evaluate the hepatoprotective effect of the leaf methanol extract of J. gendarussa leaf (J gMe) against carbofuran (CF)-intoxicated liver injuries in Sprague-Dawley rats, along with the antioxidant activity of this extract. For this purpose, levels of serum diagnostic markers, hepatic antioxidant enzymes, and liver histo-architecture were employed to justify the protective efficacy of J gMe. In addition, the phenolic and flavonoid contents of the extract were quantified, and antioxidant activity was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide, hydrogen peroxide, and hydroxyl free radical scavenging assays. Results revealed that the leaf extract caused a significant (<0.05, <0.01) decrease of the level of hepatic enzymes, triglycerides, and bilirubin and an increase of the total protein. J gMe has also significantly (<0.05, <0.01) lowered the level of malonylaldehyde. Carbofuran markedly suppressed hepatic antioxidant enzymes, however, the leaf extract significantly augmented these enzymes. The hepatoprotective effect was demonstrated by the improvement in the histo-architectural features of liver sections of CF-intoxicated rats treated with J gMe at 500 mg/kg dose. In addition, J gMe showed moderate total phenolic and total flavonoid content, whereas the IC50 values of DPPH, nitric oxide, hydrogen peroxide, and hydroxyl free radical scavenging assays were 71.31 ± 0.42, 134.82 ± 0.14, 47.69 ± 0.38, and 118.44 ± 0.30 µg/mL, respectively. In conclusion, the present study suggests the protective role of J gMe against hepatic injury induced by CF, which may be attributed to its higher antioxidant properties and thereby scientifically justifies its traditional use.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Depuradores de Radicales Libres/uso terapéutico , Género Justicia/química , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Animales , Carbofurano/toxicidad , Catalasa/metabolismo , Depuradores de Radicales Libres/toxicidad , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/toxicidad , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
5.
Chem Res Toxicol ; 32(8): 1619-1629, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31334637

RESUMEN

The aim of the present study was to evaluate the protective effect of Syzygium cymosum leaf methanol extract (SCL) against carbofuran (CF)-induced hepatotoxicity in Sprague-Dawley rats, along with the identification and quantification of polyphenolic composition by high-performance liquid chromatography (HPLC). Results revealed the presence of alkaloids, tannins, and flavonoids in SCL. Similarly, HPLC analysis suggests that SCL contains some known important antioxidants, such as rutin, benzoic acid, and salicylic acid that could be responsible for the hepatoprotective activity of the extract. In CF-exposed rats, significant hematological alterations along with histological changes were marked by the presence of necrosis, congestion, and inflammation. CF-intoxication also showed an increase in lipid peroxidation and decrease in cellular antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) levels in rats compared with the control group. Furthermore, coadministration of SCL significantly ameliorated the abnormalities and improved the cellular arrangement in experimental animals. SCL also reversed the alteration of hematological and biochemical parameters and brought them back to normal levels as compared to the control group. In conclusion, S. cymosum may be one of the best sources of natural antioxidant compounds that can be used in the treatment of oxidative stress and stress-related diseases and disorders.


Asunto(s)
Antioxidantes/farmacología , Carbofurano/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Sustancias Protectoras/farmacología , Syzygium/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA