Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Immunol ; 15: 1339470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633251

RESUMEN

Protozoa exert a serious global threat of growing concern to human, and animal, and there is a need for the advancement of novel therapeutic strategies to effectively treat or mitigate the impact of associated diseases. Omega polyunsaturated fatty acids (ω-PUFAs), including Omega-3 (ω-3) and omega-6 (ω-6), are constituents derived from various natural sources, have gained significant attention for their therapeutic role in parasitic infections and a variety of essential structural and regulatory functions in animals and humans. Both ω-3 and ω-6 decrease the growth and survival rate of parasites through metabolized anti-inflammatory mediators, such as lipoxins, resolvins, and protectins, and have both in vivo and in vitro protective effects against various protozoan infections. The ω-PUFAs have been shown to modulate the host immune response by a commonly known mechanism such as (inhibition of arachidonic acid (AA) metabolic process, production of anti-inflammatory mediators, modification of intracellular lipids, and activation of the nuclear receptor), and promotion of a shift towards a more effective immune defense against parasitic invaders by regulation the inflammation like prostaglandins, leukotrienes, thromboxane, are involved in controlling the inflammatory reaction. The immune modulation may involve reducing inflammation, enhancing phagocytosis, and suppressing parasitic virulence factors. The unique properties of ω-PUFAs could prevent protozoan infections, representing an important area of study. This review explores the clinical impact of ω-PUFAs against some protozoan infections, elucidating possible mechanisms of action and supportive therapy for preventing various parasitic infections in humans and animals, such as toxoplasmosis, malaria, coccidiosis, and chagas disease. ω-PUFAs show promise as a therapeutic approach for parasitic infections due to their direct anti-parasitic effects and their ability to modulate the host immune response. Additionally, we discuss current treatment options and suggest perspectives for future studies. This could potentially provide an alternative or supplementary treatment option for these complex global health problems.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedades Parasitarias , Infecciones por Protozoos , Animales , Humanos , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Insaturados , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Infecciones por Protozoos/tratamiento farmacológico , Enfermedades Parasitarias/tratamiento farmacológico
2.
Front Pharmacol ; 13: 889181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694271

RESUMEN

Purpose: This study aimed to investigate the relationship between gut microbiota (GM) and serum metabolism using antineoplastic Fufangchangtai (FFCT) as the model prescription in the treatment of colorectal cancer (CRC). Methods: Tumor-bearing mice and normal mice were administered different doses of FFCT. The tumor volume of tumor-bearing mice was observed. The levels of CD4+ and CD8+ T cells in the blood, spleen, and tumor of mice were determined using a flow cytometer. The bacterial microbiota in stool samples from mice and the serum metabolomics of FFCT-treated mice and fecal microbiota transplantation mice were detected using 16s RNA sequencing and liquid chromatography-mass spectrometry (LC/MS), respectively. Results: The tumor volume of mice showed no significant decrease after FFCT intervention. The levels of CD4+ and CD8+T lymphocytes showed a significant increase under the intervention of FFCT. GM of colorectal tumor-bearing mice and healthy mice were determined, and the diversity and abundance of Firmicutes, Deferribacteres, Bacteroidetes, and Proteobacteria were significantly different between the two groups. Furthermore, we found that the levels of matrine, isogingerenone B, and armillaripin were significantly decreased in tumor-bearing mice after FFCT intervention, indicating that the tumor-induced dysbiosis of gut bacteria may affect the absorption and metabolism of FFCT. Under the intervention of FFCT, serum metabolism of mice transplanted with feces from CRC patients showed less metabolites related to FFCT than that from healthy people, indicating that GM could be a single factor affecting the metabolism of FFCT. Furthermore, we found that different doses of FFCT-treated mice had higher abundance of Roseburia, Turicibacter, and Flexispira than that in the non-intervention control group. Firmicutes and Bacteroidetes in FFCT-treated groups showed a similar trend compared to the healthy group, indicating that FFCT might correct the intestinal microenvironment by modulating gut microbiota in colorectal tumor-bearing mice. Conclusion: The dysbiosis of GM in tumor-bearing mice reduced the serum metabolites related to FFCT, and FFCT could correct the disordered GM of colorectal tumor-bearing mice to exert efficacy.

3.
Front Immunol ; 12: 784683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095858

RESUMEN

Cryptosporidium parvum infection is very common in infants, immunocompromised patients, or in young ruminants, and chitosan supplementation exhibits beneficial effects against the infection caused by C. parvum. This study investigated whether chitosan supplementation modulates the gut microbiota and mediates the TLR4/STAT1 signaling pathways and related cytokines to attenuate C. parvum infection in immunosuppressed mice. Immunosuppressed C57BL/6 mice were divided into five treatment groups. The unchallenged mice received a basal diet (control), and three groups of mice challenged with 1 × 106 C. parvum received a basal diet, a diet supplemented with 50 mg/kg/day paromomycin, and 1 mg/kg/day chitosan, and unchallenged mice treated with 1 mg/kg/day chitosan. Chitosan supplementation regulated serum biochemical indices and significantly (p < 0.01) reduced C. parvum oocyst excretion in infected mice treated with chitosan compared with the infected mice that received no treatment. Chitosan-fed infected mice showed significantly (p < 0.01) decreased mRNA expression levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) compared to infected mice that received no treatment. Chitosan significantly inhibited TLR4 and upregulated STAT1 protein expression (p < 0.01) in C. parvum-infected mice. 16S rRNA sequencing analysis revealed that chitosan supplementation increased the relative abundance of Bacteroidetes/Bacteroides, while that of Proteobacteria, Tenericutes, Defferribacteres, and Firmicutes decreased (p < 0.05). Overall, the findings revealed that chitosan supplementation can ameliorate C. parvum infection by remodeling the composition of the gut microbiota of mice, leading to mediated STAT1/TLR4 up- and downregulation and decreased production of IFN-γ and TNF-α, and these changes resulted in better resolution and control of C. parvum infection.


Asunto(s)
Quitosano/farmacología , Criptosporidiosis , Microbioma Gastrointestinal , Factor de Transcripción STAT1/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Criptosporidiosis/inmunología , Criptosporidiosis/metabolismo , Cryptosporidium parvum , Suplementos Dietéticos , Huésped Inmunocomprometido , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
4.
BMC Vet Res ; 16(1): 234, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641048

RESUMEN

BACKGROUND: Tea polyphenols (TPs) attenuate obesity related liver inflammation; however, the anti-obesity effects and anti-inflammatory mechanisms are not clearly understood. This study aimed to determine whether the anti-obesity and anti-inflammatory TPs mechanisms associated with cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression levels, and obesity-related gene response in dogs. RESULTS: Dogs fed TPs displayed significantly decreased (p < 0.01) mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6) compared to dogs that consumed high-fat diet (HFD) alone. TPs significantly (p < 0.01) inhibited COX-2 and iNOS expression level, and decreased liver fat content and degeneration. CONCLUSION: These results suggested that TPs act as a therapeutic agent for obesity, liver inflammation, and fat degeneration via COX-2 and iNOS inhibition, with TNF-α, IL-1ß, and IL-6 involvement.


Asunto(s)
Camellia sinensis/química , Ciclooxigenasa 2/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Obesidad/veterinaria , Polifenoles/farmacología , Animales , Antiinflamatorios , Enfermedades de los Perros/tratamiento farmacológico , Perros , Inflamación/veterinaria , Obesidad/tratamiento farmacológico
5.
J Nutr Biochem ; 78: 108324, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32004926

RESUMEN

Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1ß, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/microbiología , Obesidad/terapia , Polifenoles/administración & dosificación , Té/química , Animales , Análisis por Conglomerados , Dieta Alta en Grasa , Suplementos Dietéticos , Perros , Firmicutes/clasificación , Fusobacterias/clasificación , Guanosina Trifosfato/metabolismo , Inflamación , Mucosa Intestinal/metabolismo , Intestinos/patología , Masculino , Obesidad/metabolismo , Filogenia , ARN Ribosómico 16S , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Aumento de Peso/efectos de los fármacos
6.
Nutrients ; 10(7)2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29954124

RESUMEN

Sperm cells are highly sensitive to reactive oxygen species (ROS), which are produced during cellular oxidation. In normal cell biology, ROS levels increase with a decreasing antioxidant response, resulting in oxidative stress which threatens sperm biology. Oxidative stress has numerous effects, including increased apoptosis, reduced motion parameters, and reduced sperm integrity. In this regard, green tea polyphenols (GrTPs) have been reported to possess properties that may increase the quality of male and female gametes, mostly via the capability of catechins to reduce ROS production. GrTPs have antioxidant properties that improve major semen parameters, such as sperm concentration, motility, morphology, DNA damage, fertility rate, and gamete quality. These unique properties of green tea catechins could improve reproductive health and represent an important study area. This exploratory review discusses the therapeutic effects of GrTPs against infertility, their possible mechanisms of action, and recommended supportive therapy for improving fertility in humans and in animals.


Asunto(s)
Antioxidantes/uso terapéutico , Fármacos para la Fertilidad Femenina/uso terapéutico , Fármacos para la Fertilidad Masculina/uso terapéutico , Fertilidad/efectos de los fármacos , Infertilidad Femenina/tratamiento farmacológico , Infertilidad Masculina/tratamiento farmacológico , Polifenoles/uso terapéutico , Salud Reproductiva , , Animales , Antioxidantes/aislamiento & purificación , Femenino , Humanos , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Infertilidad Femenina/fisiopatología , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Óvulo/patología , Estrés Oxidativo/efectos de los fármacos , Polifenoles/aislamiento & purificación , Embarazo , Factores de Riesgo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/patología , Té/química
7.
Toxicon ; 150: 60-65, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29778593

RESUMEN

During current research, the effects of deoxynivalenol (DON) exposure on cerebral lipid peroxidation, neurotransmitter secretion and calcium homeostasis in chicks were evaluated. One hundred and twenty Hailan chicks (male, 1-day-old) were randomly divided into four groups. Chicks in low, medium and high dose groups were fed with 0.27, 1.68 and 12.21 mg/kg-1 DON respectively by gavage according to feed intake. Chicks in control group were fed with physiological saline by gavage. The trials were conducted for 36 d. At the end of the trials, twenty chicks per group were sacrificed, and the cerebra were collected for measuring the brain indices. Compared with the control group, the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase were significantly decreased in treatment groups (P < 0.05), the contents of malondialdehyde in high dose group were increased (P < 0.05), the catalase activities and nitric oxide contents in medium and high dose groups were decreased (P < 0.05), and the activities of T-AOC in high dose group were reduced (P < 0.05). Compared with the control group, the concentrations of norepinephrine and 5-hydroxytryptamine in high dose group were obviously increased (P < 0.05), while the concentrations of dopamine were decreased (P < 0.05). Meanwhile, the concentrations of calcium and calmodulin (CaM) in medium and high dose groups were lower than those of the control group (P < 0.05), and the gene relative expression of CaM mRNA in treatment groups were significantly reduced (P < 0.05), in a dose-dependent manner. These results suggested that DON exposure can affect the cerebral lipid peroxidation, neurotransmitters secretion and the balance of calcium homeostasis in chicks.


Asunto(s)
Encéfalo/efectos de los fármacos , Calcio/metabolismo , Pollos , Peroxidación de Lípido/efectos de los fármacos , Neurotransmisores/metabolismo , Tricotecenos/toxicidad , Animales , Antioxidantes , Encéfalo/metabolismo , Calmodulina/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Masculino , Oxidación-Reducción , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Inflammopharmacology ; 26(2): 319-330, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29532213

RESUMEN

Inflammatory bowel disease (IBD) is a collection of inflammatory conditions of colon and small intestine which affect millions of individuals worldwide and the prevalence amount is on the rise. The organ failure as well as loss of tissue function is because of the inflammatory reaction which is the major contributor of tissue healing leading to lifelong debilitation. To stop the tough consequences of inflammation every patient pursues alternative therapy to relieve symptoms. Green tea polyphenols (GTPs) play significant roles in down regulating signaling pathways because GTPs exert effective antioxidant properties and regulate Toll-like receptor 4 (TLR4) expression via certain receptor, inhibited endotoxin-mediated tumor necrosis factor alpha (TNF-α) production by blocking transcription nuclear factor-kappa B (NF-kB) activation and upstream of mediated I kappa B kinase complex pathway activities, as well as intrusion with the flow of cytokines and synthesis of cyclooxygenase-2 (COX-2). This article highlights the green approach regarding the defensive effects of GTP review-related studies concerning the contrary effects and the key therapeutic targets application of GTPs in biomedical field to treat inflammatory bowel disease (IBD) and its complications. .


Asunto(s)
Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Polifenoles/farmacología , Té/química , Animales , Antioxidantes/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-28676833

RESUMEN

Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1ß in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA