Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Genet ; 62(2): 207-222, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33409935

RESUMEN

Phosphorus (P) deficiency is one of the major limiting factors for rice productivity with only one locus (PSTOL1) available for field based application. A biparental mapping population (F6) derived from two P deficiency tolerant genotypes (Sahbhagi Dhan (SD) (PSTOL1+) and Chakhao Poreiton (CP) (PSTOL1-)), in which, transcriptome data generated from our lab had previously shown existence of diverse mechanisms was used to identify novel regions for better yield under lowland acidic soils. Phenotyping at F4, F5 and F6 generations revealed significant correlation between traits like tiller number at 30 days (TN 30), tiller number at 60 days (TN 60), filled grains (FG), percent spikelet fertility (SF%), panicle number (PN) and grain yield per panicle (GYPP) and also association with better yield/performance under low P acidic soil conditions. Through selected genotyping on a set of forty superior and inferior lines using SSR, candidate gene-based and SNP polymorphic markers, 5 genomic regions associated with various yield-related traits were identified. Marker trait association studies revealed 13 markers significantly associated with yield attributing traits and PUE under lowland acidic field conditions. Chi-square and regression analyses of markers run on the entire population identified seven and six markers for SF% and GYPP, respectively, and two for biological yield with positive allele derived from SD which constitute a novel 1.847-Mb region on chromosome 2 flanked by two markers RM12550 and PR9-2. Expression analysis of 7 candidate genes lying within this region across SD, CP and two low P susceptible rice genotypes has revealed that expression of four genes including SPL4, SPL5, ACA9 and MLO8 is significantly upregulated only in SD under low P conditions. In CP, there is low expression of MLO8 under low P conditions, whereas SPL4, SPL5 and Os02g08120 are downregulated. In the case of the two susceptible genotypes, there is no expression of Os02g08120 either in optimum or limiting conditions. Sequence data across a panel of 3024 rice genotypes also suggests that there is polymorphism for these differentially expressed genes. The genes and underlying markers identified on chromosome 2 will be key to imparting tolerance to low P in diverse genetic backgrounds and for marker-assisted selection for higher yield under lowland acidic conditions.


Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas , Oryza , Fósforo/química , Ácidos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Marcadores Genéticos , Concentración de Iones de Hidrógeno , Oryza/genética , Oryza/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Suelo/química
2.
Mol Biol Rep ; 47(4): 2529-2549, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32086721

RESUMEN

The availability of phosphorus (P) affects productivity of rice. Under acidic soil conditions (pH < 5.5), P is rapidly immobilized in the soil. Several transcription factors play an important role in low Pi tolerance response, including MYB family members but their role in acidic soil is yet unknown. In this study, genome wide identification and characterization of golden 2-like (GLK) members belonging to GARP superfamily from rice (OsGLK) led to identification of 46 members distributed over 12 chromosomes. We assigned gene nomenclature, analyzed gene structure and identified mutant orthologs and phenotypes in maize and rice, respectively. On the basis of biological functions three categories viz., (a) two-component response regulator (five members), (b) putative transcription factor (21 members) and (c) phosphate starvation response (8 members) were identified. Phylogenetic analysis revealed a total of nine subgroups with MYB homeodomain-like and MYB CC-type domains conserved across members. Expression profiling of OsGLKs in response to 24 and 48 h of low Pi in four contrasting rice genotypes, revealed significantly higher expression of OsGLK10, OsGLK15, OsGLK22 and OsGLK30 in tolerant genotypes as compared to susceptible genotypes, suggesting their role in Pi starvation tolerance. Meta analyses and cis-regulatory elements (CREs) profiling of OsGLK showed diverse expression pattern in various tissues and organs and also modulation in response to various abiotic and biotic stresses. Our results highlight the versatile role of this diverse and complex GLK family, in particular to abiotic stress. These genes will form the basis of future studies on low Pi tolerance in acidic soils.


Asunto(s)
Oryza/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Simulación por Computador , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Genotipo , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Estrés Fisiológico/genética , Zea mays/genética
3.
Acta Biol Hung ; 68(4): 398-411, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29262706

RESUMEN

Phosphorus deficiency adversely affects crop productivity. The mechanism of tolerance in plants is not well understood. The current study successfully annotated a set of highly significant (Log2 RPKM ≥3) nine novel sequences up-regulated in P deficient condition identified from a low P tolerant rice genotype. Sequence annotation identified two transcripts (Os01g37260 and Os02g11060) carrying known domains, F-box and WD, respectively. Multiple Expectation maximization for Motif Elicitation (MEME) revealed presence of conserved domains like D[LP][HY][CL]D[CM][DT]C[AP][DQ][IQ]C, [EH][DN]HN[HS] [ER][FY][EP]I[HN]H which might play a role in phosphorus deficiency tolerance. Analysis of the upstream regions indicated presence of stress responsive elements like E Box, ABRE, and MYBCORE suggesting regulation of the novel transcripts by DNA binding. Protein localization prediction tool suggests that these novel proteins might be targeted to nucleus, chloroplast and cell wall. Transcripts Os02g03640 and Os02g10250 revealed potential target sites for microRNA binding suggesting role of novel miRNAs in low phosphorus response. Our analysis suggests that an F-box protein, Os01g37260 (OSFBx14) might be a promising candidate gene playing a role in multiple abiotic stresses including P deficiency.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/biosíntesis , Oryza/metabolismo , Fósforo/deficiencia , ARN de Planta/biosíntesis , Estrés Fisiológico , MicroARNs/genética , Oryza/genética , Fósforo/metabolismo , ARN de Planta/genética
4.
Biotechnol Genet Eng Rev ; 33(1): 97-117, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28927358

RESUMEN

Plants experience low phosphorus (P) and high iron (Fe) levels in acidic lowland soils that lead to reduced crop productivity. A better understanding of the relationship between these two stresses at molecular and physiological level will lead to development of suitable strategies to increase crop productivity in such poor soils. Tolerance for most abiotic stresses including P deficiency and Fe toxicity is a quantitative trait in rice. Recent studies in the areas of physiology, genetics, and overall metabolic pathways in response to P deficiency of rice plants have improved our understanding of low P tolerance. Phosphorous uptake and P use efficiency are the two key traits for improving P deficiency tolerance. In the case of Fe toxicity tolerance, QTLs have been reported but the identity and role played by underlying genes is just emerging. Details pertaining to Fe deficiency tolerance in rice are well worked out including genes involved in Fe sensing and uptake. But, how rice copes with Fe toxicity is not clearly understood. This review focuses on the progress made in understanding these key environmental stresses. Finally, an opinion on the key genes which can be targeted for this stress is provided.


Asunto(s)
Hierro/toxicidad , Oryza/crecimiento & desarrollo , Fósforo/metabolismo , Suelo/química , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/efectos de los fármacos , Oryza/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Sitios de Carácter Cuantitativo
5.
Protoplasma ; 254(2): 725-736, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27228993

RESUMEN

Low phosphorus (P) tolerance in rice is a biologically and agronomically important character. Low P tolerant Indica-type rice genotypes, Sahbhagi Dhan (SD) and Chakhao Poreiton (CP), are adapted to acidic soils and show variable response to low P levels. Using RNAseq approach, transcriptome data was generated from roots of SD and CP after 15 days of low P treatment to understand differences and similarities at molecular level. In response to low P, number of genes up-regulated (1318) was more when compared with down-regulated genes (761). Eight hundred twenty-one genes found to be significantly regulated between SD and CP in response to low P. De novo assembly using plant database led to further identification of 1535 novel transcripts. Functional annotation of significantly expressed genes suggests two distinct methods of low P tolerance. While root system architecture in SD works through serine-threonine kinase PSTOL1, suberin-mediated cell wall modification seems to be key in CP. The transcription data indicated that CP relies more on releasing its internally bound Pi and coping with low P levels by transcriptional and translational modifications and using dehydration response-based signals. Role of P transporters seems to be vital in response to low P in CP while sugar- and auxin-mediated pathway seems to be preferred in SD. At least six small RNA clusters overlap with transcripts highly expressed under low P, suggesting role of RNA super clusters in nutrient response in plants. These results help us to understand and thereby devise better strategy to enhance low P tolerance in Indica-type rice.


Asunto(s)
Ácidos/química , Adaptación Fisiológica/efectos de los fármacos , Oryza/genética , Fósforo/farmacología , Raíces de Plantas/genética , Suelo/química , Transcriptoma/genética , Regiones no Traducidas 5'/genética , Adaptación Fisiológica/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genoma de Planta , Genotipo , Anotación de Secuencia Molecular , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Análisis de Secuencia de ADN , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sitio de Iniciación de la Transcripción , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
6.
Curr Drug Metab ; 16(8): 685-704, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26264204

RESUMEN

Importance of magnetic nanoparticles in daily life including biomedical applications in near future cannot be overlooked. This review focuses on the properties of magnetic nanoparticles (MNPs), various approaches for their synthesis, and their biomedical applications. First part of this review focuses on the classes, physical properties, and characteristics of MNPs. The second part sheds light on strategies developed for the synthesis of MNPs, with special attention given to biological, physical, and chemical approaches as well as recent modifications in the preparation of monodispersed samples. Furthermore, this review deals with the biomedical applications of MNPs, which includes applications in targeted drug delivery, diagnostics, gene therapy, hyperthermia and advantages in the field of medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas del Metal , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Artritis/tratamiento farmacológico , Medios de Contraste/administración & dosificación , Medios de Contraste/uso terapéutico , Terapia Genética , Humanos , Hipertermia Inducida , Fenómenos Magnéticos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA