Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 15(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37630693

RESUMEN

In chronic kidney disease (CKD), metabolic derangements resulting from the interplay between decreasing renal excretory capacity and impaired gut function contribute to accelerating disease progression and enhancing the risk of complications. To protect residual kidney function and improve quality of life in conservatively managed predialysis CKD patients, current guidelines recommend protein-restricted diets supplemented with essential amino acids (EAAs) and their ketoanalogues (KAs). In clinical studies, such an approach improved nitrogen balance and other secondary metabolic disturbances, translating to clinical benefits, mainly the delayed initiation of dialysis. There is also increasing evidence that a protein-restricted diet supplemented with KAs slows down disease progression. In the present review article, recent insights into the role of KA/EAA-supplemented protein-restricted diets in delaying CKD progression are summarized, and possible mechanistic underpinnings, such as protein carbamylation and gut dysbiosis, are elucidated. Emerging evidence suggests that lowering urea levels may reduce protein carbamylation, which might contribute to decreased morbidity and mortality. Protein restriction, alone or in combination with KA/EAA supplementation, modulates gut dysbiosis and decreases the generation of gut-derived uremic toxins associated, e.g., with cardiovascular disease, inflammation, protein energy wasting, and disease progression. Future studies are warranted to assess the effects on the gut microbiome, the generation of uremic toxins, as well as markers of carbamylation.


Asunto(s)
Microbiota , Carbamilación de Proteína , Humanos , Dieta con Restricción de Proteínas , Disbiosis , Calidad de Vida , Tóxinas Urémicas , Diálisis Renal , Suplementos Dietéticos , Progresión de la Enfermedad
2.
Sci Rep ; 8(1): 14752, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283097

RESUMEN

A mechanistic link between trimethylamine N-oxide (TMAO) and atherogenesis has been reported. TMAO is generated enzymatically in the liver by the oxidation of trimethylamine (TMA), which is produced from dietary choline, carnitine and betaine by gut bacteria. It is known that certain members of methanogenic archaea (MA) could use methylated amines such as trimethylamine as growth substrates in culture. Therefore, we investigated the efficacy of gut colonization with MA on lowering plasma TMAO concentrations. Initially, we screened for the colonization potential and TMAO lowering efficacy of five MA species in C57BL/6 mice fed with high choline/TMA supplemented diet, and found out that all five species could colonize and lover plasma TMAO levels, although with different efficacies. The top performing MA, Methanobrevibacter smithii, Methanosarcina mazei, and Methanomicrococcus blatticola, were transplanted into Apoe-/- mice fed with high choline/TMA supplemented diet. Similar to C57BL/6 mice, following initial provision of the MA, there was progressive attrition of MA within fecal microbial communities post-transplantation during the initial 3 weeks of the study. In general, plasma TMAO concentrations decreased significantly in proportion to the level of MA colonization. In a subsequent experiment, use of antibiotics and repeated transplantation of Apoe-/- mice with M. smithii, led to high engraftment levels during the 9 weeks of the study, resulting in a sustained and significantly lower average plasma TMAO concentrations (18.2 ± 19.6 µM) compared to that in mock-transplanted control mice (120.8 ± 13.0 µM, p < 0.001). Compared to control Apoe-/- mice, M. smithii-colonized mice also had a 44% decrease in aortic plaque area (8,570 µm [95% CI 19587-151821] vs. 15,369 µm [95% CI [70058-237321], p = 0.34), and 52% reduction in the fat content in the atherosclerotic plaques (14,283 µm [95% CI 4,957-23,608] vs. 29,870 µm [95% CI 18,074-41,666], p = 0.10), although these differences did not reach significance. Gut colonization with M. smithii leads to a significant reduction in plasma TMAO levels, with a tendency for attenuation of atherosclerosis burden in Apoe-/- mice. The anti-atherogenic potential of MA should be further tested in adequately powered experiments.


Asunto(s)
Apolipoproteínas E/efectos de los fármacos , Aterosclerosis/prevención & control , Microbioma Gastrointestinal/fisiología , Methanobrevibacter/metabolismo , Methanosarcina/metabolismo , Metilaminas/sangre , Placa Aterosclerótica/prevención & control , Administración Oral , Animales , Aorta/metabolismo , Aorta/microbiología , Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/microbiología , Colina/administración & dosificación , Colina/metabolismo , Suplementos Dietéticos , Heces/microbiología , Femenino , Metano/metabolismo , Methanobrevibacter/crecimiento & desarrollo , Methanosarcina/crecimiento & desarrollo , Metilaminas/administración & dosificación , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Consorcios Microbianos/fisiología , Placa Aterosclerótica/microbiología
3.
Kidney Int Rep ; 1(2): 94-104, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28164170

RESUMEN

Hypertension is common in patients with chronic kidney disease (CKD) and is the most important modifiable risk factor for CKD progression and adverse cardiovascular events in these patients. Diagnosis and successful management of hypertension are critically dependent on accurate blood pressure (BP) measurement. This is most relevant to CKD patients, in whom BP control is difficult to achieve and in whom early antihypertensive treatment is imperative to prevent kidney and cardiovascular complications. Accumulated data indicate that ambulatory blood pressure monitoring (ABPM) is better in detecting hypertension than office BP measurement. ABPM is also a superior prognostic marker compared with office BP and has successfully identified hypertensive CKD patients at increased risk. Additionally, ABPM provides information on circadian BP variation and short-term BP variability, which is associated with cardiovascular and renal outcomes. This paper reviews the evidence for the usefulness of ABPM in detection and management of hypertension in CKD patients and discusses our current understanding of the pathophysiology of altered circadian BP rhythm and variability in CKD and the role of abnormal BP patterns detected by ABPM in relation to outcomes in CKD. In addition, this Review examines the emerging role of antihypertensive chronotherapy to tailor BP management to the circadian BP pattern abnormality detected by 24-hour ABPM.

5.
Nat Rev Nephrol ; 7(7): 369-84, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21629229

RESUMEN

Protein-energy wasting (PEW), which is manifested by low serum levels of albumin or prealbumin, sarcopenia and weight loss, is one of the strongest predictors of mortality in patients with chronic kidney disease (CKD). Although PEW might be engendered by non-nutritional conditions, such as inflammation or other comorbidities, the question of causality does not refute the effectiveness of dietary interventions and nutritional support in improving outcomes in patients with CKD. The literature indicates that PEW can be mitigated or corrected with an appropriate diet and enteral nutritional support that targets dietary protein intake. In-center meals or oral supplements provided during dialysis therapy are feasible and inexpensive interventions that might improve survival and quality of life in patients with CKD. Dietary requirements and enteral nutritional support must also be considered in patients with CKD and diabetes mellitus, in patients undergoing peritoneal dialysis, renal transplant recipients, and in children with CKD. Adjunctive pharmacological therapies, such as appetite stimulants, anabolic hormones, and antioxidative or anti-inflammatory agents, might augment dietary interventions. Intraperitoneal or intradialytic parenteral nutrition should be considered for patients with PEW whenever enteral interventions are not possible or are ineffective. Controlled trials are needed to better assess the effectiveness of in-center meals and oral supplements.


Asunto(s)
Suplementos Dietéticos , Nutrición Enteral/métodos , Alimentos Formulados , Enfermedades Renales/dietoterapia , Enfermedad Crónica , Humanos , Resultado del Tratamiento
6.
J Am Soc Nephrol ; 16(4): 862-8, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15716333

RESUMEN

Hemodialysis (HD) is a protein catabolic procedure. Whole-body amino acid turnover studies identify dialysate amino acid loss and reduced protein synthesis as the catabolic events; proteolysis is not increased. Regional amino acid kinetics, however, document enhanced muscle protein breakdown as the cause of the catabolism; muscle protein synthesis also increased but to a lesser magnitude than the increment in protein breakdown. This discordance between whole-body and regional kinetics is best explained by the contrasting physiology between the muscle and the liver. During HD, muscle releases amino acids, which then are taken up by the liver for de novo protein synthesis. There seems to be a somatic to visceral recycling of amino acids. Evidence supporting this concept includes the increased fractional synthesis of albumin and fibrinogen during HD. It should be emphasized that region- or organ-specific kinetics vary, and whole-body turnover is a composite of all of the visceral and somatic compartments taken together. Reduced whole-body protein synthesis may be a compensatory adaptation to dialysate amino acid loss with a consequent reduction in plasma amino acid concentration. Notwithstanding the protein catabolic nature of HD, evidence is accumulating that intradialytic nutritional supplementation may blunt its catabolic effect.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Diálisis Renal , Humanos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA