Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 9(9): e19814, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809691

RESUMEN

Sweet orange (Citrus × sinensis (L.) Osbeck), lentisk (Pistacia lentiscus L.) and lemon eucalyptus (Eucalyptus citriodora Hook) are medicinal plants known by its culinary virtues. Their volatile oils have demonstrated promising antimicrobial activity against a panel of microbial strains, including those implicated in food deterioration. In this exploratory investigation, we aimed to determine the antimicrobial formulation of sweet orange, lentisk and lemon eucalyptus essential oils (EOs) using the simplex-centroid mixture design approach coupled with a broth microdilution method. EOs were first extracted by hydrodistillation, and then their phytochemical profile was characterized using Gas chromatography-mass spectrometry (GC-MS). GC-MS analysis identified d-limonene (14.27%), careen-3 (14.11%), ß-myrcene (12.53%) as main components of lentisk EOs, while lemon eucalyptus was dominated by citronellal (39.40%), ß-citronellol (16.39%) and 1,8-cineole (9.22%). For sweet orange EOs, d-limonene (87.22%) was the principal compound. The three EOs exhibited promising antimicrobial potential against various microorganisms. Lemon eucalyptus and sweet orange EO showed high activity against most tested microorganisms, while lentisk EO exerted important effect against some microbes but only moderate activity against others. The optimization formulations of antimicrobial potential showed interesting synergistic effects between three EOs. The best combinations predicted on C. albicans, S. aureus, E. coli, S. enterica and B. cereus correspond to 44%/55%/0%, 54%/16%/28%, 43%/22%/33%, 45%/17%/36% and 36%/30%/32% of Citrus sinensis, Pistacia lentiscus and Eucalyptus citriodora EOs, respectively. These findings suggest that the combination of EOs could be used as natural food preservatives and antimicrobial agents. However, further studies are needed to determine the mechanisms of action and efficacy of these EOs against different microorganisms.

2.
J Pharmacopuncture ; 26(1): 27-37, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37007296

RESUMEN

Objectives: Moroccan Arbutus unedo is an essential medicinal plant; however, little is known about the biological properties of its leaves mentioned in Moroccan traditional medicine. Methods: Various standard experiments were performed to evaluate the phytochemical, antidiabetic, antioxidant, antibacterial, and acute and sub-chronic toxicity characteristics of A. unedo leaves. Results: Phytochemical screening led to the identification of several phytochemical classes, including tannins, flavonoids, terpenoids, and anthraquinones, with high concentrations of polyphenols (31.83 ± 0.29 mg GAEs/g extract) and flavonoids (16.66 ± 1.47 mg REs/g extract). Further, the mineral analysis revealed high levels of calcium and potassium. A. unedo extract demonstrated significant antioxidant and anti-diabetic activities by inhibiting α-amylase (1.350 ± 0.32 g/mL) and α-glucosidase (0.099 ± 1.21 g/mL) compared to the reference drug Acarbose. Also, the methanolic extract of the plant exhibited significantly higher antibacterial activity than the aqueous extract. Precisely, three of the four examined bacterial strains exhibited substantial susceptibility to the methanolic extract . Minimum bactericidal concentration (MBC)/minimum inhibitory concentration (MIC) values indicated that A. unedo harbor abundant bactericidal compounds. For toxicological studies, mice were administered with A. unedo aqueous extract at single doses of 2,000 and 5,000 mg/kg. They did not exhibit significant abnormal behavior, toxic symptoms, or death during the 14-day acute toxicity test and the 90-day sub-chronic toxicity test periods. The general behavior, body weight, and hematological and biochemical status of the rats were assessed, revealing no toxicological symptoms or clinically significant changes in biological markers observed in the mice models, except hypoglycemia, after 90 days of daily dose administration. Conclusion: The study highlighted several biological advantages of A. unedo leaves without toxic effects in short-term application. Our findings suggest that conducting more comprehensive and extensive in vivo investigations is of utmost importance to identify molecules that can be formulated into pharmaceuticals in the future.

3.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014359

RESUMEN

Eucalyptus globulus is a plant widely used by the world population, including Morocco, in the treatment of several pathologies. The aim of this work is to evaluate the antioxidant, anti-inflammatory, dermatoprotective, and antimicrobial effects of essential oil and honey from E. globulus, as well as their combination. Chemical composition was determined by GC-MS analysis. The antioxidant activity was evaluated by three tests, namely, DPPH, reducing power, and the ß-carotene/linoleic acid assay. The anti-inflammatory activity was investigated in vitro (5-lipoxygenase inhibition) and in vivo (carrageenan-induced paw edema model), while the dermatoprotective activity was tested in vitro (tyrosinase inhibition). Moreover, the antibacterial activity was assessed using agar well diffusion and microdilution methods. The results showed that eucalyptol presents the main compound of the essential oil of E. globulus (90.14%). The mixture of essential oil with honey showed the best antioxidant effects for all the tests used (0.07 < IC50 < 0.19 mg/mL), while the essential oil was the most active against tyrosinase (IC50 = 38.21 ± 0.13 µg/mL) and 5-lipoxygenase (IC50 = 0.88 ± 0.01 µg/mL), which corroborated the in vivo test. Additionally, the essential oil showed the best bactericidal effects against all strains tested, with inhibition diameter values ranging from 12.8 to 21.6 mm. The findings of this work showed that the combination of the essential oil with honey showed important results in terms of biological activity, but the determination of the underlying mechanisms of action remains a major prospect to be determined.


Asunto(s)
Antiinfecciosos , Eucalyptus , Miel , Aceites Volátiles , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Araquidonato 5-Lipooxigenasa , Eucalyptus/química , Pruebas de Sensibilidad Microbiana , Monofenol Monooxigenasa , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química
4.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014393

RESUMEN

Salvia officinalis is a medicinal plant used to treat some diseases, including microbial infections and diabetes. Different studies showed the biological and pharmacological properties of this species. The aim of this study was the determination of the chemical compounds of S. officinalis essential oils and the investigation of their antimicrobial, antioxidant, antidiabetic, and anti-inflammatory properties. The chemical compounds of S. officinalis were determined by GC-MS analysis. The antioxidant activity was assessed by DPPH, ABTS, H2O2, and FRAP assays. The in vitro antidiabetic effect was evaluated by the inhibition of α-amylase, α-glucosidase, and lipase activities, and the anti-inflammatory effect was evaluated using the 5-lipoxygenase assay. Moreover, antibacterial activity was assessed against six bacterial strains using agar well diffusion assay and microdilution method. The main compounds in essential oils of S. officinalis at three phenological stages were naphthalenone, camphor, 1.8-cineole, and α-thujone. The full flowering stage essential oil showed the best antioxidant activity with different IC50 values according to the used tests. This oil also exhibited important inhibitory effects at the full flowering stage against α-amylase (IC50 = 69.23 ± 0.1 µg/mL), α-glucosidase (IC50 = 22.24 ± 0.07 µg/mL), and lipase (IC50 = 37.3 ± 0.03 µg/mL). The 5-lipoxygenase inhibitory effect was the best at the full flowering stage (IC50 = 9.24 ± 0.03 µg/mL). The results of the antibacterial evaluation revealed that, at three seasonal periods, S. officinalis essential oil demonstrated strong antibacterial activity. Although the full flowering stage had the best antibacterial activity, there were no significant differences between the three stages. Additionally, the essential oils showed bactericidal effects on Listeria monocytogenes, Staphylococcus aureus, Bacillus subtilis, Proteus mirabilis, Escherichia coli, and Salmonella typhimurium, respectively. The findings of this work showed remarkably that S. officinalis synthesizes essential oils according to different developmental stages. Moreover, it has exhibited interesting biological and pharmacological properties justifying its medicinal effects and suggesting it as a very important source of natural drugs.


Asunto(s)
Aceites Volátiles , Salvia officinalis , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Araquidonato 5-Lipooxigenasa , Escherichia coli , Peróxido de Hidrógeno/farmacología , Hipoglucemiantes/farmacología , Lipasa , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites de Plantas/farmacología , Salvia officinalis/química , alfa-Amilasas , alfa-Glucosidasas/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-35990819

RESUMEN

Metabolic syndrome (MS) is a serious health problem associated with an increase in risk factors for hepatic steatosis, which is the most common liver disease today. The goal of this study was to investigate the protective effects of resveratrol against metabolic alterations associated with a high-fat high-fructose diet (HFFD). Thirty-two male rats were randomly divided into four equal groups: control (cont.), metabolic syndrome (MS), resveratrol (Res), and metabolic syndrome treated with resveratrol (MS + Res). Resveratrol was administrated orally at a dose of 30 mg/kg·bw, daily. After 10 weeks, body weight, serum biochemical parameters, hepatic oxidative stress, inflammatory markers, as well as mRNA levels of hepatic genes related to lipid metabolism and insulin signaling were measured. In addition, the liver was examined histopathologically to detect lipid deposition. Increased body weight, hepatic dysfunction, dyslipidemia, hepatic insulin resistance, hepatic oxidative and inflammatory stress conditions, upregulation of mRNA expression level of sterol regulatory element binding protein 1-c (SREBP1-c), and downregulation of mRNA expression levels of peroxisome proliferated activated receptor alpha (PPARα) and insulin receptor substrate-2 (IR-S2) were all observed in the MS rats. Hepatic steatosis was confirmed by hematoxylin and eosin and Oil Red O staining. Administration of resveratrol reduced liver steatosis, oxidative stress, and inflammatory state. Also, it improved lipid profile as well as insulin sensitivity and reverted alterations in hepatic mRNA expression levels of the tested genes. Based on these findings, resveratrol could be proposed as a therapeutic approach for MS prevention.

6.
Front Med (Lausanne) ; 9: 907583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783612

RESUMEN

The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from -7.84 to -7.15 kcal/mol compared with the -6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.

7.
J Integr Med ; 20(4): 348-354, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35643766

RESUMEN

OBJECTIVE: Salvadora persica (SP) is used as a food additive and is a common ingredient in folk medicine. This study investigates the antioxidant, anti-inflammatory, and beneficial effects of SP against cyclophosphamide (CYP) toxicity in rats. METHODS: In a 10-day study, 32 male rats were equally allocated into 4 groups (8 rats/group) as follows: the normal control (NC group), normal rats that only received oral aqueous extract of SP (100 mg/[kg·d]; SP group), animals treated with intraperitoneal CYP injections (30 mg/[kg·d]; CYP group), and the CYP + SP group that concurrently received CYP with SP aqueous extract. Serum samples were collected to measure the liver and renal biochemical profiles, as well as antioxidant and oxidative stress markers and the concentrations of interleukin-1ß (IL-1ß), IL-6, IL-10, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB) and adenosine 5'-monophosphate-activated protein kinase (AMPK). Hepatic and renal tissues were also harvested for histopathology and to measure apoptosis using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling technique, alongside tissue levels of oxidative stress markers. RESULTS: Liver enzymes, total bilirubin, creatinine and urea, as well as serum IL-1ß, IL-6, TNF-α and NF-κB increased significantly, whilst total protein, albumin, calcium, IL-10 and AMPK declined in serum of the CYP group relative to the NC group. The hepatorenal concentrations of glutathione, glutathione peroxidase and catalase declined markedly in the CYP group, whereas malondialdehyde, protein adducts, and apoptosis index increased compared with the NC group. By contrast, the hepatorenal biochemistry and apoptosis index of the SP group were comparable to the NC group. Interestingly, the CYP + SP group had significant improvements in the liver and renal biochemical parameters, enhanced anti-oxidative and anti-inflammatory effects, and marked declines in hepatic and renal apoptosis relative to the CYP group. Moreover, all monitored parameters were statistically indistinguishable between the CYP + SP group and the NC group. CONCLUSION: This study suggests that the aqueous extract of SP could be a potential remedy against CYP-induced hepatorenal damage and may act by modulating the AMPK/NF-κB signaling pathway and promoting anti-oxidative and anti-inflammatory activities.


Asunto(s)
Antioxidantes , Salvadoraceae , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Apoptosis , Biomarcadores , Ciclofosfamida , Inflamación/tratamiento farmacológico , Interleucina-10 , Interleucina-6/metabolismo , Hígado , Masculino , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas , Salvadoraceae/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Biomed Res Int ; 2022: 5445291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707379

RESUMEN

Plants generally secrete secondary metabolites in response to stress. These secondary metabolites are very useful for humankind as they possess a wide range of therapeutic activities. Secondary metabolites produced by plants include alkaloids, flavonoids, terpenoids, and steroids. Flavonoids are one of the classes of secondary metabolites of plants found mainly in edible plant parts such as fruits, vegetables, stems, grains, and bark. They are synthesized by the phenylpropanoid pathway. Flavonoids possess antibacterial, antiviral, antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic properties. Due to their various therapeutic applications, various pharmaceutical companies have exploited different plants for the production of flavonoids. To overcome this situation, various biotechnological strategies have been incorporated to improve the production of different types of flavonoids. In this review, we have highlighted the various types of flavonoids, their biosynthesis, properties, and different strategies to enhance the production of flavonoids.


Asunto(s)
Alcaloides , Plantas Medicinales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Flavonoides/metabolismo , Flavonoides/uso terapéutico , Plantas Medicinales/metabolismo , Terpenos
9.
Biomed Res Int ; 2022: 4740246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722462

RESUMEN

Crocus sativus (C. sativus) is considered as the costliest spice and an important medicinal plant. Herein, we investigated the effects of tepal extract (TE) of C. sativus on the viability of the human glioblastoma cells. Results revealed that TE significantly (P < 0.05) inhibited the proliferation of U87 glioblastoma cells in a dose-dependent manner with comparatively lower toxic effects against normal astrocytes. The IC50 of TE against U87 glioblastoma cells was found to be 130 µg/mL as compared to 600 µg/mL against normal astrocytes. TE also inhibited the colony formation of U87 cells significantly (P < 0.05). The AO/EB and Annexin V/PI staining assays indicated that TE stimulated apoptosis in U87 cells dose dependently. The early and late apoptotic U87 cells increased from 0.66% and 2.3% at control to 14.2% and 21.4% at 260 µg/mL of TE. Moreover, TE caused upregulation of Bax and suppression of Bcl-2. Wound healing assay showed that migration of the U87 cells was suppressed significantly (P < 0.05) at 80 µg/mL of TE. Taken together, these results suggest that TE exhibits antiproliferative effects against U87 glioma cells and may prove to be an important source of natural anticancer agents.


Asunto(s)
Crocus , Glioblastoma , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Humanos , Extractos Vegetales/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-35600963

RESUMEN

For the treatment and maintenance of postprandial blood glucose increases (i.e., diabetes mellitus), alpha (α)-amylase is a well-known therapeutic target. In this paper, we report an initial exploration of the work, i.e., in vitro alpha-amylase activity of the hydroalcoholic polyherbal extract of the selected plants. After drying, the plant material is ground individually, and at least 100 gm of the crude powder is prepared from each plant. 100 gm of each plant was combined, and a total of 500 gm of the crude powder (Ichnocarpus frutescens (100 gm) + Ficus dalhousie (100 gm) + Crateva magna (100 gm) + Alpinia galangal (100 gm) + Swertia chirata (100 gm)) was prepared to carry out the extraction. This obtained extract was subjected to preliminary phytochemical screening and in vitro alpha-amylase activity. At 16 mg/mL, acarbose displayed 78.40 ± 0.36% inhibition, whereas the extract exhibited 72.96 ± 0.70% inhibition, which is significantly comparable. The IC50 value of acarbose was 12.9 ± 1.12, whereas the extract exhibited 13.31 ± 1.12 mg/mL. The extract possesses numerous classes of chemicals such as alkaloids, glycosides, tannins, polyphenols, and terpenoids, which can contribute to the antidiabetic activity through alpha-amylase inhibition. This was an initial exploration of the work as a proof of concept for the development of polyherbal tea bag formulation for the treatment of diabetes. In the future, we are aiming to investigate the effectiveness of polyherbal tea bags in the treatment of diabetes using more in vitro and in vivo models. From the present investigation, we have concluded that this extract can be used for the treatment of diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA