Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 3798, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123189

RESUMEN

Lyme disease is one of most common vector-borne diseases, reporting more than 300,000 cases annually in the United States. Treating Lyme disease during its initial stages with traditional tetracycline antibiotics is effective. However, 10-20% of patients treated with antibiotic therapy still shows prolonged symptoms of fatigue, musculoskeletal pain, and perceived cognitive impairment. When these symptoms persists for more than 6 months to years after completing conventional antibiotics treatment are called post-treatment Lyme disease syndrome (PTLDS). Though the exact reason for the prolongation of post treatment symptoms are not known, the growing evidence from recent studies suggests it might be due to the existence of drug-tolerant persisters. In order to identify effective drug molecules that kill drug-tolerant borrelia we have tested two antibiotics, azlocillin and cefotaxime that were identified by us earlier. The in vitro efficacy studies of azlocillin and cefotaxime on drug-tolerant persisters were done by semisolid plating method. The results obtained were compared with one of the currently prescribed antibiotic doxycycline. We found that azlocillin completely kills late log phase and 7-10 days old stationary phase B. burgdorferi. Our results also demonstrate that azlocillin and cefotaxime can effectively kill in vitro doxycycline-tolerant B. burgdorferi. Moreover, the combination drug treatment of azlocillin and cefotaxime effectively killed doxycycline-tolerant B. burgdorferi. Furthermore, when tested in vivo, azlocillin has shown good efficacy against B. burgdorferi in mice model. These seminal findings strongly suggests that azlocillin can be effective in treating B. burgdorferi sensu stricto JLB31 infection and furthermore in depth research is necessary to evaluate its potential use for Lyme disease therapy.


Asunto(s)
Antibacterianos/administración & dosificación , Azlocilina/administración & dosificación , Borrelia burgdorferi/efectos de los fármacos , Enfermedad de Lyme/tratamiento farmacológico , Animales , Borrelia burgdorferi/fisiología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana , Femenino , Humanos , Enfermedad de Lyme/microbiología , Ratones Endogámicos C3H
3.
Gastroenterology ; 149(1): 52-55.e2, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25863215

RESUMEN

Systemic therapies for inflammatory bowel disease are associated with an increased risk of infections and malignancies. Topical therapies reduce systemic exposure, but can be difficult to retain or have limited proximal distribution. To mitigate these issues, we developed a thermo-sensitive platform, using a polymer-based system that is liquid at room temperature but turns into a viscous gel on reaching body temperature. After rectal administration to mice with dextran sulfate sodium-induced colitis, the platform carrying budesonide or mesalamine becomes more viscoelastic near body temperature. Mice given the drug-containing platform gained more weight and had reduced histologic and biologic features of colitis than mice given the platform alone or liquid drugs via enema. Image analysis showed that enemas delivered with and without the platform reached similar distances in the colons of mice, but greater colonic retention was achieved by using the platform.


Asunto(s)
Administración Tópica , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Administración Rectal , Animales , Sulfato de Dextran/toxicidad , Femenino , Enfermedades Inflamatorias del Intestino/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos
4.
PLoS One ; 8(12): e85160, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386462

RESUMEN

The secondary structures of amyloidogenic proteins are largely influenced by various intra and extra cellular microenvironments and metal ions that govern cytotoxicity. The secondary structure of a prion fragment, PrP(111-126), was determined using circular dichroism (CD) spectroscopy in various microenvironments. The conformational preferences of the prion peptide fragment were examined by changing solvent conditions and pH, and by introducing external stress (sonication). These physical and chemical environments simulate various cellular components at the water-membrane interface, namely differing aqueous environments and metal chelating ions. The results show that PrP(111-126) adopts different conformations in assembled and non-assembled forms. Aging studies on the PrP(111-126) peptide fragment in aqueous buffer demonstrated a structural transition from random coil to a stable ß-sheet structure. A similar, but significantly accelerated structural transition was observed upon sonication in aqueous environment. With increasing TFE concentrations, the helical content of PrP(111-126) increased persistently during the structural transition process from random coil. In aqueous SDS solution, PrP(111-126) exhibited ß-sheet conformation with greater α-helical content. No significant conformational changes were observed under various pH conditions. Addition of Cu(2+) ions inhibited the structural transition and fibril formation of the peptide in a cell free in vitro system. The fact that Cu(2+) supplementation attenuates the fibrillar assemblies and cytotoxicity of PrP(111-126) was witnessed through structural morphology studies using AFM as well as cytotoxicity using MTT measurements. We observed negligible effects during both physical and chemical stimulation on conformation of the prion fragment in the presence of Cu(2+) ions. The toxicity of PrP(111-126) to cultured astrocytes was reduced following the addition of Cu(2+) ions, owing to binding affinity of copper towards histidine moiety present in the peptide.


Asunto(s)
Astrocitos/metabolismo , Cobre , Péptidos , Priones , Animales , Astrocitos/patología , Células Cultivadas , Cobre/química , Cobre/metabolismo , Péptidos/química , Péptidos/metabolismo , Priones/química , Priones/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA