Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(21): 24356-24369, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34024104

RESUMEN

Burn wounds are susceptible to microbial invasion from both resident and exogenous bacteria, which becomes a critical public health issue and causes substantial economic burden. There is a perceived demand to produce new antimicrobial wound dressings that hinder bacterial colonization while accelerating the healing process and hence would provide an improved standard of care for patients. Since ancient times, herbal extracts from medicinally important plants have extensively been used for treating burn injuries. This work reports the utility of electrospun nanofibers containing plant extracts and antibiotics combination as a multifunctional scaffold for treating second-degree burns. First, we determined the various components of plant extracts from Gymnema sylvestre by two different processing methods and their synergism with minocycline antibiotics. Then, we prepared core-shell nanofibrous dressings with poly-ε-caprolactone/gelatin laden with minocycline hydrochloride as a shell and gelatin infused with G. sylvestre extracts (ultrasound-assisted extracts and cold macerated extracts) as the core using coaxial electrospinning. The electrospun nanofibers displayed a smooth, continuous, and bead-free morphology with adequate wettability. The presence of extract components in the core-shell nanofibers resulted in enhanced mechanical properties when compared to pristine mats. The core-shell structures resulted in sustained release of the bioactive components when compared to nanofiber blends. Core-shell nanofiber mats containing plant extracts and antibiotic combinations displayed potent antimicrobial and antibiofilm properties while promoting the spread and proliferation of skin cells when compared to pristine mats. In a porcine model of cutaneous second-degree burns, we showed that wounds treated with the antimicrobial dressing improved re-epithelialization and collagen organization in comparison to untreated wounds.


Asunto(s)
Antiinfecciosos/administración & dosificación , Vendajes , Biopelículas/efectos de los fármacos , Medicina de Hierbas , Nanofibras/administración & dosificación , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Animales , Adhesión Bacteriana/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Piel/efectos de los fármacos , Porcinos
2.
Toxicol In Vitro ; 73: 105149, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33753177

RESUMEN

In the situation of radiation triage, accidental exposure to uranium, or uranium contamination in food or water; haematopoietic decline or bone marrow sickness is observed in the aftermath followed by other systemic effects. Most studies done previously have been on cytogenetic analysis in blood lymphocytes of uranium miners wherein causal relationship was difficult to be established. This study provides new insights into the minimum risk level of uranium to human lymphocytes, DNA damage induced and alterations in the cell cycle progression through 96-h acute toxicity study. Cytotoxicity studies by MTT assay and flow cytometry showed that uranyl nitrate concentration of 1280 µM lead to 50% cell death, 640 µM caused 25% death, 250 µM caused 10% cell death and 5 µM was the NOAEL. Uranium caused DNA damages in a dose dependent manner as evident from comet and CBMN assays. A marked increase in G2/M phase cells was observed in the test culture groups. Halting of cell cycle at G2/M checkpoint also signified the extent of double strand breaks and genetic instability with increasing uranium dose in this study. Better cell cycle responses and lower genetic damage index observed in lower dosage of exposure, suggests adaptability and repair responses in human lymphocytes. Together these results advance our understanding of uranium effects on mammalian cells.


Asunto(s)
Linfocitos/efectos de los fármacos , Contaminantes Radiactivos/toxicidad , Nitrato de Uranilo/toxicidad , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Ensayo Cometa , Daño del ADN , Inestabilidad Genómica/efectos de los fármacos , Humanos , Pruebas de Micronúcleos , Pruebas de Toxicidad Aguda , Uranio
3.
Nanomaterials (Basel) ; 9(3)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897714

RESUMEN

Electrospun fibers have emerged as promising materials in the field of biomedicine, due to their superior physical and cell supportive properties. In particular, electrospun mats are being developed for advanced wound dressing applications. Such applications require the firers to possess excellent antimicrobial properties in order to inhibit potential microbial colonization from resident and non-resident bacteria. In this study, we have developed Poly-ε-Caprolactone /gelatin hybrid composite mats loaded with natural herbal extract (Gymnema sylvestre) to prevent bacterial colonization. As-spun scaffolds exhibited good wettability and desirable mechanical properties retaining their fibrous structure after immersing them in phosphate buffered saline (pH 7.2) for up to 30 days. The initial burst release of Gymnema sylvestre prevented the colonization of bacteria as confirmed by the radial disc diffusion assay. Furthermore, the electrospun mats promoted cellular attachment, spreading and proliferation of human primary dermal fibroblasts and cultured keratinocytes, which are crucial parenchymal cell-types involved in the skin recovery process. Overall these results demonstrated the utility of Gymnema sylvestre impregnated electrospun PCL/Gelatin nanofibrous mats as an effective antimicrobial wound dressing.

4.
Mater Sci Eng C Mater Biol Appl ; 98: 503-514, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30813052

RESUMEN

Wound care management presents one of the substantial and tenacious challenges to the healthcare systems worldwide. Microbial colonization and subsequent biofilm formation after injury have garnered much attention, as there is an appreciable correlation between biofilms formation and delayed healing in chronic wounds. Nanotechnology has emerged as a potential platform for the management of treating acute and chronic wounds. This study presents the utility of electrospun nanofiber mats containing a natural extract (Gymnema sylvestre) that averts biofilm formation but supports human dermal fibroblasts (hDFs) attachment. The scaffolds exhibited good wettability, enhanced mechanical properties and contact mediated inhibition of Gram-positive and Gram-negative bacteria. MTS viability assay and confocal imaging further confirmed that the natural extract loaded mats remained non-cytotoxic for hDFs. Overall these findings evidenced the suitability of the Gymnema sylvestre (GS) functionalized electrospun poly-ε-caprolactone (PCL) nanofibers, as an effective wound dressing with broad spectrum anti-bacterial properties.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Gymnema sylvestre/química , Nanofibras/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Poliésteres/química , Alcaloides/farmacología , Muerte Celular/efectos de los fármacos , Dermis/citología , Conductividad Eléctrica , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Nanofibras/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Propiedades de Superficie , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA