Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896010

RESUMEN

Centella asiatica (CA) is a medicinal plant widely used in the East, with many of its phytoconstituents remaining unexplored. In this study, compounds were extracted and identified from C. asiatica to determine its medicinal properties. Phytochemical screening was conducted on shoot, callus, and cell suspension extracts, revealing the presence of tannins, flavonoids, terpenoids, saponins, and steroids in all three cultures, with no alkaloids detected. IC50 values were determined to evaluate the antioxidant activity of the extracts, with the highest value observed for cell suspension culture (20 µg/mL), followed by shoot culture (19 µg/mL), and then callus extract (10 µg/mL), with ascorbic acid as the standard at an IC50 value of 26.25 µg/mL. Finally, density functional theory was used to analyze the structure-activity relationships of the identified compounds from C. asiatica extract. The results suggest that ultrasonic-assisted extraction yielded the highest recovery and antioxidant activity, with a scavenging activity of 79%. This study provides valuable insights into the phytochemical composition and antioxidant potential of C. asiatica, which may have implications for its use in traditional medicine and future drug development.

2.
J Funct Biomater ; 14(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37623670

RESUMEN

Nanomaterials (NMs) synthesized from natural sources have been attracting greater attention, due to their intrinsic advantages including biocompatibility, stimuli-responsive property, nontoxicity, cost-effectiveness, and non-immunogenic characteristics in the biological environment. Among various biomedical applications, a breakthrough has been achieved in the development of drug delivery systems (DDS). Biocompatibility is necessary for treating a disease safely without any adverse effects. Some components in DDS respond to the physiological environment, such as pH, temperature, and functional group at the target, which facilitates targeted drug release. NM-based DDS is being applied for treating cancer, arthritis, cardiovascular diseases, and dermal and ophthalmic diseases. Metal nanomaterials and carbon quantum dots are synthesized and stabilized using functional molecules extracted from natural sources. Polymers, mucilage and gums, exosomes, and molecules with biological activities are directly derived from natural sources. In DDS, these functional components have been used as drug carriers, imaging agents, targeting moieties, and super disintegrants. Plant extracts, biowaste, biomass, and microorganisms have been used as the natural source for obtaining these NMs. This review highlights the natural sources, synthesis, and application of metallic materials, polymeric materials, carbon dots, mucilage and gums, and exosomes in DDS. Aside from that, challenges and future perspectives on using natural resources for DDS are also discussed.

3.
Molecules ; 27(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431893

RESUMEN

The present study aimed to analyze the in vitro antibacterial, antioxidant, larvicidal and cytotoxicity properties of green synthesized silver nanoparticles (Ag NPs) using aqueous extracts from fruits of Lagerstroemia speciosa and flowers of Couropita guinensis. Synthesized Ag NPs were characterized using UV-DRS, FTIR, XRD, DLS, and High-Resolution SEM and TEM analyses. Absorption wavelength was observed at 386 nm by UV-DRS analysis and energy band gap was calculated as 3.24 eV. FTIR analysis showed the existence of various functional groups in the aqueous extract and in the NPs. DLS analysis showed the stability and particle size of the synthesized Ag NPs. SEM analysis revealed that Ag NPs are in a face centered cubic symmetry and spherical shape with a size of 23.9 nm. TEM analysis showed particle size as 29.90 nm. Ag NPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. DPPH scavenging trait of Ag NPs was ranging from 20.0 ± 0.2% to 62.4 ± 0.3% and observed significant larvicidal activity (LC50 at 0.742 ppm and LC90 at 6.061 ppm) against Culex quinquefasciatus. In vitro cytotoxicity activity of Ag NPs was also tested against human breast cancer (MCF-7) and fibroblast cells (L-929) and found that cells viabilities are ranging (500 to 25 µg/mL) from 52.5 ± 0.4 to 94.0 ± 0.7% and 53.6 ± 0.5 to 90.1 ± 0.8%, respectively. The synthesized Ag NPs have the potential to be used in the various biomedical applications.


Asunto(s)
Lagerstroemia , Nanopartículas del Metal , Humanos , Plata/química , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Frutas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Bacterias Gramnegativas , Bacterias Grampositivas , Flores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA