Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biotechnol ; 343: 71-82, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34534595

RESUMEN

The present study investigates ameliorative effect of silicon nanoparticles (SiNPs) and indole acetic acid (IAA) alone and in combination against hexavalent chromium (CrVI) toxicity in rice seedlings. The results of the study revealed protective effects of SiNPs and IAA against CrVI toxicity. The 100 µM of CrVI imposed toxic effects in rice seedlings at morphological, physiological and biochemical levels which coincided with increased level of intracellular CrVI and declined level of endogenous nitric oxide (NO). The CrVI enhanced levels of superoxide radicals (SOR) (59.51% and 50.1% in shoot and root, respectively) and H2O2 (19.5% and 23.69% in shoot and root, respectively). However, when SiNPs and IAA were applied to plants under CrVI stress, they enhanced tolerance and defence mechanisms as manifested in terms of increased biomass, endogenous NO, photosynthetic pigments, and antioxidants level. It was also noticed that CrVI arrested cell cycle at G2/M phase whereas growth was restored as compared to control when SiNPs and IAA were supplemented. Thus, the hypothesis that combined application of SiNPs and IAA will be effective in alleviating CrVI toxicity is validated from the results of this study. Moreover, in SiNPs and IAA-mediated mitigation of CrVI toxicity, endogenous NO has a positive role. The importance of the study will be that the combination of SiNPs and IAA can be utilized against heavy metal stress and even when supplied alone, they will enhance the crop productivity parameters with and without stress conditions.


Asunto(s)
Nanopartículas , Oryza , Cromo/toxicidad , Peróxido de Hidrógeno , Ácidos Indolacéticos , Estrés Oxidativo , Plantones , Silicio/toxicidad
2.
Physiol Plant ; 173(4): 2262-2275, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34590723

RESUMEN

The action of nanoparticles is increasingly being studied in recent years to minimize their toxic impacts. Besides this, efforts are also being made to minimize their toxicity in crop plants by using various chemicals, i.e. nutrients, donors of signaling molecules, plant hormones, and so on. However, associated alleviatory mechanisms are still not well known. Therefore, in the present study, we have investigated the toxicity of CuONPs and its mitigation by exogenously applied calcium (Ca). The focus was on whether indole-3-acetic acid (IAA) or endogenous nitric oxide (NO) has any role in accomplishing this task. CuONPs declined wheat growth due to increased accumulation of Cu and oxidative stress markers such as superoxide radicals, hydrogen peroxide, and lipid peroxidation (malondialdehyde) and it was also accompanied by a decline in endogenous NO. CuONPs also altered the redox status of ascorbate and glutathione by inhibiting the activity of their regenerating enzymes. This collectively leads to cell death in wheat seedlings. However, exogenous supplementation of Ca mitigated toxic effects of CuONPs by reducing the excess accumulation of Cu, which caused remarkable enhancement in growth, protein contents, photosynthetic pigments, and endogenous NO; altogether protecting wheat roots from cell death. Interestingly, addition of 2,3,5-triiodobenzoic acid (TIBA) further increased CuONPs toxicity even in the presence of Ca, but the addition of IAA rescued this effect of TIBA. These results clearly show that Ca mitigates CuONPs toxicity in wheat seedlings by involving IAA. Further, the results also showed that endogenous NO has a positive and indispensable role in Ca-mediated mitigation of CuONPs toxicity in wheat seedlings.


Asunto(s)
Nanopartículas , Plantones , Antioxidantes , Calcio , Cobre/toxicidad , Peróxido de Hidrógeno , Ácidos Indolacéticos , Óxido Nítrico , Estrés Oxidativo , Triticum
3.
3 Biotech ; 11(7): 322, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34194906

RESUMEN

Zinc oxide nanoparticles (ZnONP) were synthesized and characterized using SEM, EDAX, DLS and UV-Vis spectra. Its use as a nanofertilizer as an alternative to conventional zinc sulphate (ZnSO4.7H2O) was evaluated in five Zn-deficient soils with a variable pH range (7.2-8.7). For this, the carbon of the soil microbial biomass (SMBC), the bacterial population, the nutrient dynamics and the biometric parameters of the wheat crop were assessed. The varying dosages (0, 100, 200 and 500 mg/L), sizes (30-100 nm), and the spherical shape of ZnONPs were evaluated in comparison to ZnSO4.7H2O levels. Results showed the maximum SMBC and bacterial population at 100 mg/L of ZnONPs but a sharp decline at higher concentrations. In addition, soil application of ZnONPs at 5 mg/kg produced a higher root elongation (4.3-8.8%), shoot elongation (3.5-4.0%), total chlorophyll (4.9-5.6%), grain yield (1.7-2.3%) and grain Zn-content (1.6-2.1%) in comparison to the conventional ZnSO4.7H2O at 10 mg/L. ZnONPs at 100 mg/L produced a higher soil microbial biomass carbon (3.9-4.6%), bacterial population (7.2-9.0%), germination (22%) and grain Zn-content (17.9-20%) as compared to the conventional ZnSO4.7H2O at 0.5%. The higher grain Zn-contents could be attributed to the small size and high surface area of ZnONPs resulting in easy entry into the plant system either through root or foliar by penetrating the pores present in the cell membranes. Conversely, the conventional ZnSO4.7H2O, due to its larger size and higher solubility as compared to ZnONPs, has low retention in plant systems, high surface run-off and low fertilizer efficiency. Thus, the authors concluded to apply spherically synthesized ZnONPs (average size-36.7 nm) at 5 mg/kg in the soil application and 100 mg/L in the foliar application for maintaining SMBC and bacterial population, improving total chlorophyll, and grain Zn-contents and overall sustaining wheat production in Zn-deficient neutral and alkaline soils. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02861-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA