Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 625(7994): 321-328, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200296

RESUMEN

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma Humano , Pradera , Esclerosis Múltiple , Humanos , Conjuntos de Datos como Asunto , Dieta/etnología , Dieta/historia , Europa (Continente)/etnología , Predisposición Genética a la Enfermedad/historia , Genética Médica , Historia del Siglo XV , Historia Antigua , Historia Medieval , Migración Humana/historia , Estilo de Vida/etnología , Estilo de Vida/historia , Esclerosis Múltiple/genética , Esclerosis Múltiple/historia , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/historia , Enfermedades Neurodegenerativas/inmunología , Densidad de Población
2.
Nature ; 625(7994): 329-337, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200294

RESUMEN

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Asunto(s)
Genoma Humano , Genómica , Migración Humana , Pueblos Nórdicos y Escandinávicos , Humanos , Dinamarca/etnología , Emigrantes e Inmigrantes/historia , Genotipo , Pueblos Nórdicos y Escandinávicos/genética , Pueblos Nórdicos y Escandinávicos/historia , Migración Humana/historia , Genoma Humano/genética , Historia Antigua , Polen , Dieta/historia , Caza/historia , Agricultores/historia , Cultura , Fenotipo , Conjuntos de Datos como Asunto
3.
Nature ; 625(7994): 312-320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200293

RESUMEN

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Asunto(s)
Asiático , Pueblo Europeo , Genoma Humano , Selección Genética , Humanos , Afecto , Agricultura/historia , Alelos , Enfermedad de Alzheimer/genética , Asia/etnología , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnología , Pueblo Europeo/genética , Agricultores/historia , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Historia Antigua , Migración Humana , Caza/historia , Familia de Multigenes/genética , Fenotipo , Biobanco del Reino Unido , Herencia Multifactorial/genética
4.
Nature ; 625(7994): 301-311, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200295

RESUMEN

Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.


Asunto(s)
Genética de Población , Genoma Humano , Migración Humana , Metagenómica , Humanos , Agricultura/historia , Asia Occidental , Mar Negro , Diploidia , Europa (Continente)/etnología , Genotipo , Historia Antigua , Migración Humana/historia , Caza/historia , Cubierta de Hielo
5.
Nat Ecol Evol ; 4(3): 346-355, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127685

RESUMEN

Dairy pastoralism is integral to contemporary and past lifeways on the eastern Eurasian steppe, facilitating survival in agriculturally challenging environments. While previous research has indicated that ruminant dairy pastoralism was practiced in the region by circa 1300 BC, the origin, extent and diversity of this custom remain poorly understood. Here, we analyse ancient proteins from human dental calculus recovered from geographically diverse locations across Mongolia and spanning 5,000 years. We present the earliest evidence for dairy consumption on the eastern Eurasian steppe by circa 3000 BC and the later emergence of horse milking at circa 1200 BC, concurrent with the first evidence for horse riding. We argue that ruminant dairying contributed to the demographic success of Bronze Age Mongolian populations and that the origins of traditional horse dairy products in eastern Eurasia are closely tied to the regional emergence of mounted herding societies during the late second millennium BC.


Asunto(s)
Agricultura , Industria Lechera , Agricultura/historia , Animales , Bovinos , Industria Lechera/historia , Europa (Continente) , Historia Antigua , Caballos , Humanos , Dinámica Poblacional , Condiciones Sociales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA