Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7008, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117240

RESUMEN

Fish population declines from thiamine (vitamin B1) deficiency have been widespread in ecologically and economically valuable organisms, ranging from the Great Lakes to the Baltic Sea and, most recently, the California coast. Thiamine deficiencies in predatory fishes are often attributed to a diet of prey fishes with high levels of thiamine-degrading (e.g., thiaminase) enzymes, such as alewives, rainbow smelt, and anchovies. Since their discovery, thiaminase I enzymes have been recognized for breaking down thiamine into its pyrimidine and thiazole moieties using various nucleophilic co-substrates to afford cleavage, but these studies have not thoroughly considered other factors that could modify enzyme activity. We found the thiaminase I enzyme from Clostridium botulinum efficiently degrades thiamine in the presence of pyridoxine (vitamin B6) as a co-substrate but has relatively limited activity in the presence of nicotinic acid (vitamin B3). Using fluorescence measurements, thiamine degradation in an over-the-counter complete multivitamin formulation was inhibited, and a B-complex formulation required co-substrate supplementation for maximal thiamine depletion. These studies prompted the evaluation of specific constituents contributing to thiaminase I inhibition by both chromatography and fluorescence assays: Cu2+ potently and irreversibly inhibited thiamine degradation; ascorbic acid was a strong but reversible inhibitor; Fe2+, Mn2+ and Fe3+ modulated thiamine degradation to a lesser degree. The enhancement by pyridoxine and inhibition by Cu2+ extended to thiaminase-mediated degradation from Burkholderia thailandensis, Paenibacillus thiaminolyticus, and Paenibacillus apiarius in tryptic soy broth supernatants. These co-substrate limitations and the common presence of inhibitory dietary factors complement recent studies reporting that the intended function of thiaminase enzymes is to recycle thiamine breakdown products for thiamine synthesis, not thiamine degradation.


Asunto(s)
Transferasas Alquil y Aril , Deficiencia de Tiamina , Animales , Piridoxina , Tiamina/metabolismo , Peces/metabolismo , Hidrolasas/metabolismo
2.
Talanta ; 205: 120168, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450459

RESUMEN

Deficiencies in thiamine (vitamin B1) cause a host of neurological and reproductive impairments yielding morbidity and mortality across environmental and clinical realms. In a technique analogous to immunomagnetic separation, we introduce the use of thiamine periplasmic binding protein (TBP)-conjugated magnetic beads to isolate thiamine from complex matrices. TBP expressed in Escherichia coli is highly specific to thiamine and provides an alternative to antibodies for this non-immunogenic target. After incubation with the sample and removal of unbound matrix constituents, thiamine is simultaneously released and converted to its fluorescent oxidation product thiochrome by alkaline potassium ferricyanide. Subsequent measurement of fluorescence at thiochrome-specific wavelengths provides a second layer of specificity for the detection of thiamine. Thiamine could be quantified at concentrations as low as 5 nM ranging up to 240 nM. Within, we apply this technique to selectively capture and quantify thiamine in complex salmonid fish egg and tissue matrices. Our results showed no measurable non-specific binding to the beads by endogenous fluorophores in the fish egg matrix. Thiamine levels as low as 0.2 nmol/g of fish egg can be detected using this approach, which is sufficient to assess deficiencies causing morbidity and mortality in fish that occur at 1.0 nmol/g of egg. This practical method may find application in other resource limited settings for clinical, food, or dietary supplement analyses.


Asunto(s)
Técnicas Biosensibles/métodos , Imanes/química , Proteínas de Unión Periplasmáticas/química , Tiamina/análisis , Tiamina/aislamiento & purificación , Transferasas Alquil y Aril/metabolismo , Animales , Huevos/análisis , Límite de Detección , Microesferas , Salmón , Tiamina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA