Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 29(5): 334-343, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30588862

RESUMEN

Para-methoxycinnamic acid (PMCA) and Ethyl-p-methoxycinnamate (EPMC) are reported to possess neuroprotective effect in reversing an acute memory deficit. However, there is a dearth of evidence for their therapeutic effect in chronic memory deficit. Thus, there is a scope to study these derivatives against the chronic model of cognitive dysfunction. The present study was aimed to determine the cognitive enhancing activity of PMCA and EPMC in aluminum-induced chronic dementia. Cognitive enhancing property of PMCA and EPMC was assessed using Morris water maze by analyzing spatial memory parameters such as escape latency, D-quadrant latency, and island entries. To find a possible mechanism, the effect of test compounds on altered acetylcholinesterase (AChE) activity and oxidative stress was determined in the hippocampus and frontal cortex of rats. Docking interaction of these derivatives with acetylcholinesterase enzyme and glutamate receptors was also studied. Treatment with PMCA and EPMC showed a significant improvement in spatial memory markers and altered hippocampal AChE activity in rats with cognitive dysfunction. The implication of hippocampal and cortical oxidative stress in memory impairment was confirmed with decreased catalase/increased thiobarbituric acid reactive substances (TBARS) in rats. PMCA and EPMC reversed the oxidative stress in the brain by negatively affecting TBARS levels. Against depleted catalase levels, PMCA was more effective than EPMC in raising the depleted catalase levels. In silico analysis revealed poor affinity of EPMC and PMCA with AChE enzyme and glutamate receptor. To conclude, PMCA and EPMC exerted cognitive enhancing property independent of direct AChE and glutamate receptor inhibition.


Asunto(s)
Aluminio/toxicidad , Cinamatos/farmacología , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/enzimología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Memoria Espacial/efectos de los fármacos
2.
J Ayurveda Integr Med ; 5(1): 25-32, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24812472

RESUMEN

BACKGROUND: Delayed fetal skeletal ossification is one of the known complications of maternal diabetes. OBJECTIVE: The present study was designed to evaluate the protective role of petroleum ether extract of Cissus quadrangularis (PECQ) on diabetes-induced delayed fetal skeletal ossification. MATERIALS AND METHODS: Female Wistar rats were rendered diabetic with streptozotocin (STZ, 40 mg/kg, intraperitonial) before mating. After confirmation of pregnancy, the pregnant rats were divided into three groups: normal control group, diabetic control group, and diabetic + CQ group. The diabetic + CQ group pregnant rats were treated with PECQ (500 mg/kg body weight) throughout their gestation period. Immediately after delivery, pups were collected from all three groups and processed for alizarin red S-alcian blue staining in order to examine the pattern of skeletal ossification. RESULTS: Fewer ossification centers and decreased extent of ossification of forelimb and hindlimb bones were observed in the neonatal pups of diabetic control group as compared to those in the normal control group. PECQ pretreatment significantly restored the ossification centers and improved the extent of ossification of forelimb and hindlimb bones in the neonatal pups of diabetic + CQ group as compared to those in the diabetic control group. CONCLUSIONS: The results suggested that PECQ treatment is effective against diabetes-induced delayed fetal skeletal ossification. However, further studies on the isolation and characterization of active constituents of PECQ, which can cross the placental barrier and are responsible for the bone anabolic activity are warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA