Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(18): 21965-21973, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37127843

RESUMEN

Hyperthermia-induced overexpression of heat shock protein 70 (HSP70) leads to the thermoresistance of cancer cells and reduces the efficiency of photothermal therapy (PTT). In contrast, cancer cell-specific membrane-associated HSP70 has been proven to activate antitumor immune responses. The dual effect of HSP70 on cancer cells inspires us that in-depth research of membrane HSP70 (mHSP70) during PTT treatment is essential. In this work, a PTT treatment platform for human breast cancer cells (MCF-7 cells) based on a mPEG-NH2-modified polydopamine (PDA)-coated gold nanorod core-shell structure (GNR@PDA-PEG) is developed. Using the force-distance curve-based atomic force microscopy (FD-based AFM), we gain insight into the PTT-induced changes in the morphology, mechanical properties, and mHSP70 expression and distribution of individual MCF-7 cells with high-resolution at the single-cell level. PTT treatment causes pseudopod contraction of MCF-7 cells and generates a high level of intracellular reactive oxygen species, which severely disrupt the cytoskeleton, leading to a decrease in cellular mechanical properties. The adhesion maps, which are recorded by aptamer A8 functional probes using FD-based AFM, reveal that PTT treatment causes a significant upregulation of mHSP70 expression and it starts to exhibit a partial aggregation distribution on the MCF-7 cell surface. This work not only exemplifies that AFM can be a powerful tool for detecting changes in cancer cells during PTT treatment but also provides a better view for targeting mHSP70 for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Femenino , Terapia Fototérmica , Proteínas HSP70 de Choque Térmico , Neoplasias de la Mama/terapia , Células MCF-7 , Línea Celular Tumoral , Fototerapia
2.
Bioconjug Chem ; 18(4): 1176-84, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17516625

RESUMEN

Functionalization of atomic force microscope (AFM) tips with bioligands converts them into monomolecular biosensors which can detect complementary receptor molecules on the sample surface. Flexible PEG tethers are preferred because the bioligand can freely reorient and locally palpate the sample surface while the AFM tip is moved along. In a well-established coupling scheme [Hinterdorfer et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 3477-3481], a heterobifunctional PEG linker is used to tether thiol-containing bioligands to amino-functionalized AFM tips. Since antibodies contain no free thiol residues, prederivatization with N-succinimidyl 3-(acetylthio)propionate (SATP) is needed which causes a relatively high demand for antibody. The present study offers a convenient alternative with minimal protein consumption (e.g., 5 microg of protein in 50 microL of buffer) and no prederivatization, using a new heterobifunctional cross-linker that has two different amino-reactive functions. One end is an activated carboxyl (N-hydroxysuccinimide ester) which is much faster to react with the amino groups of the tips than the benzaldehyde function on its other end. The reactivity of the latter is sufficient, however, to covalently bind lysine residues of proteins via Schiff base formation. The method has been critically examined, using biotinylated IgG as bioligand on the tip and mica-bound avidin as complementary receptor. These experiments were well reproduced on amino-functionalized silicon nitride chips where the number of specifically bound IgG molecules (approximately 2000 per microm2) was estimated from the amount of specifically bound ExtrAvidin-peroxidase conjugate. For a bioscientific application, human rhinovirus particles were tethered to the tip, very-low-density lipoprotein receptor fragments were tethered to mica, and the specific interaction was studied by force microscopy.


Asunto(s)
Anticuerpos/química , Microscopía de Fuerza Atómica , Aldehídos/química , Silicatos de Aluminio/química , Avidina/química , Biotina/química , Inmunoglobulina G/química , Polietilenglicoles/química , Propionatos/química , Receptores de LDL/metabolismo , Rhinovirus , Succinimidas/química , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA