Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 203(6): 3657-3665, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33993326

RESUMEN

Glycyrrhiza uralensis Fisch is a widely cultivated traditional Chinese medicine plant. In the present study, culture-independent microbial diversity analysis and functional prediction of rhizosphere microbes associated with wild and cultivated G. uralensis Fisch plant (collected from two locations) were carried. Soil physicochemical parameters were tested to assess their impact on microbial communities. A total of 4428 OTUs belonging to 41 bacterial phyla were identified. In general, cultivated sample sites were dominated by Actinobacteria whereas wild sample sites were dominated by Proteobacteria. The alpha diversity analysis showed the observed species number was higher in cultivated soil samples when compared with wild soil samples. In beta diversity analysis, it was noticed that the weighted-unifrac distance of two cultivated samples was closer although the samples were collected from different regions. Functional annotation based on PICRUST and FAPROTAX showed that the nitrogen metabolism pathway such as nitrate reduction, nitrogen fixation, nitrite ammonification, and nitrite respiration were more abundant in rhizosphere microorganisms of wild G. uralensis Fisch. These results also correlate in redundancy analysis results which show correlation between NO3--N and wild samples, which indicated that nitrogen nutrition conditions might be related to the quality of G. uralensis Fisch.


Asunto(s)
Glycyrrhiza uralensis/microbiología , Plantas Medicinales/microbiología , Rizosfera , Glycyrrhiza uralensis/crecimiento & desarrollo , Glycyrrhiza uralensis/metabolismo , Fijación del Nitrógeno , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Suelo
2.
Antonie Van Leeuwenhoek ; 111(5): 667-678, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29288361

RESUMEN

A draft genome sequence of Jiangella alba YIM 61503T revealed a genome size of 7,664,864 bp arranged in 33 scaffolds. The genome was predicted to contain 7196 predicted genes, including 51 coding for RNA. Phylogenetic and comparative analyses of the draft genome of J. alba YIM 61503T with the available genomes of other Jiangella species suggested a proximal similarity between strains J. alba YIM 61503T and J. muralis DSM 45357T, while indicating a high divergence between J. gansuensis YIM 002T and other Jiangella species. The genome of J. alba YIM 61503T also revealed genes involved in indole-3-acetic acid biosynthesis and an alkylresorcinols gene cluster. Further, detection of phosphotransferase genes in the genome of all Jiangella species indicated that they can uptake and phosphorylate sugars. The presences of TreX-Z, TreS and OtsA-OtsB genes in some of the Jiangella strains also indicated a possible mechanism for their tolerance of high salinity. Besides providing new insights into its genetic features, our results suggested that J. alba YIM 61503T could be a potential strain for further genome mining studies. The release of this genome may, therefore, provide a better prospect for understanding "evolutionary taxonomy" about this genus in future.


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/genética , Genoma Bacteriano/genética , Maytenus/microbiología , Filogenia , Plantas Medicinales/microbiología , Biología Computacional , ADN Bacteriano/genética , Modelos Biológicos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA