Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 624(7991): 355-365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092919

RESUMEN

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Asunto(s)
Encéfalo , Epigenómica , Vías Nerviosas , Neuronas , Animales , Ratones , Amígdala del Cerebelo , Encéfalo/citología , Encéfalo/metabolismo , Secuencia de Consenso , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Hipotálamo/citología , Mesencéfalo/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Rombencéfalo/citología , Análisis de la Célula Individual , Tálamo/citología , Factores de Transcripción/metabolismo
2.
Aging (Albany NY) ; 15(23): 13608-13627, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38095615

RESUMEN

Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.


Asunto(s)
Dislipidemias , Sirtuina 1 , Ratas , Animales , Sirtuina 1/metabolismo , Endorribonucleasas/genética , Endotelio Vascular/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Acetilación , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Obesidad/metabolismo , Óxido Nítrico/metabolismo
3.
Molecules ; 28(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241926

RESUMEN

Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), ß-amyrin (5), and a mixture of stigmasterol and ß-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.


Asunto(s)
Antineoplásicos , Asteraceae , Extractos Vegetales/química , Bangladesh , Estigmasterol , Fitoquímicos/farmacología , Asteraceae/química , Antioxidantes/farmacología , Antioxidantes/química , Descubrimiento de Drogas , Glucosa
4.
Food Sci Nutr ; 11(3): 1553-1562, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911838

RESUMEN

Phoenix sylvestris Roxb. (Arecaceae) seeds are used in the treatment of diabetes in the traditional system of medicine. The present study evaluated antihyperglycemic and antioxidant activities as well as the total phenolic and flavonoid content of the methanol extract of P. sylvestris seeds (MEPS). The constituents of the extract were identified by GC-MS analysis. MEPS demonstrated strong antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 162.70 ± 14.99 µg) and nitric oxide (NO) (IC50 = 101.56 ± 9.46 µg/ml) free radicals. It also possesses a substantial amount of phenolics and flavonoids. It significantly (p < .05) reduced blood glucose levels in glucose-loaded and alloxan-induced diabetic mice at the doses of 150 and 300 mg/kg b.w., respectively. A total of 46 compounds were detected and identified by gas chromatography-mass spectroscopy (GC-MS) analysis, among which 8-methylisoquinoline N-oxide (32.82%) was predominant. The phytochemical study by GC-MS revealed that the MEPS possesses compounds which could be related to its antidiabetic and antioxidant activities. To recapitulate, P. sylvestris seeds can be a very good option for antidiabetic and antioxidant activity though further studies are still recommended to figure out the responsible phytochemicals and establish their exact mechanism of action.

5.
Nutrients ; 15(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771450

RESUMEN

Ramie leaf (Boehmeria nivea L.) has been traditionally used to treat gynecological and bone-related disorders. This study aims to evaluate the effect of Ramie leaf extracts (RLE) against osteoporosis in ovariectomized (OVX) rats. Female SD rats aged seven weeks were randomly assigned into five OVX and a sham-operated (sham) group. OVX subgroups include OVX, vehicle-treated OVX group; E2, OVX with 100 µg/kg 17ß-estradiol; and RLE 0.25, 0.5, and 1, OVX rats treated with 0.25, 0.5, and 1 g/kg/day RLE, respectively. Two weeks into the bilateral ovariectomy, all the rats were orally administered with or without RLE daily for 12 weeks. OVX rats administered with RLE showed higher bone density, relatively low tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower reactive oxygen species (ROS) within bone tissues compared to vehicle-treated OVX rats. Furthermore, supplementation of RLE improved bone mineral density (BMD) and bone microstructure in the total femur. RLE prevented RANKL-induced osteoclast differentiation and expression of osteoclastogenesis-related genes such as Cal-R, MMP-9, cathepsin K, and TRAP in RANKL-induced RAW264.7 cells. Moreover, RLE administration lowered the intracellular ROS levels by reducing NADPH oxidase 1 (NOX-1) and 4-hydroxynonenal (4HNE). These results suggest that RLE alleviates bone mass loss in the OVX rats by inhibiting osteoclastogenesis, where reduced ROS and its associated signalings were involved.


Asunto(s)
Boehmeria , Osteoporosis , Extractos Vegetales , Animales , Femenino , Ratas , Densidad Ósea , Osteoclastos , Osteoporosis/prevención & control , Ovariectomía , Extractos Vegetales/farmacología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/farmacología
6.
Molecules ; 27(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557843

RESUMEN

Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.


Asunto(s)
Frutas , Hipoglucemiantes , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Bangladesh , Estudios Prospectivos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
7.
Molecules ; 27(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144691

RESUMEN

Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, and to isolate various secondary metabolites as mediators of such activities. A total of eight phenolic compounds were isolated from the dichloromethane soluble fraction of the stem extract of this plant, which were characterized by electrospray ionization (ESI) mass spectrometric and 1H NMR spectroscopic data as liquiritigenin (1), naringenin (2), apigenin (3), kaempferol (4), glabridin (5), ferulic acid (6), 4-hydroxybenzoic acid (7), and 4-hydroxybenzaldehyde (8). The dichloromethane soluble fraction exhibited the highest phenolic content (289.87 ± 0.47 mg of GAE/g of dried extract) and the highest scavenging activity (IC50 = 18.83 ± 0.07 µg/mL) against the DPPH free radical. All of the isolated compounds, except 4-hydroxybenzaldehyde, exerted a higher antioxidant effect (IC50 = 6.20 ± 0.10 to 16.11 ± 0.02 µg/mL) than the standard butylated hydroxytoluene (BHT) (IC50 = 17.09 ± 0.01 µg/mL). Significant hypoglycemic and antidiarrheal activities of the methanolic crude extract at both doses (200 mg/kg bw and 400 mg/kg bw) were observed in a time-dependent manner. Furthermore, the computational modeling study supported the current in vitro and in vivo findings, and the isolated constituents had a higher or comparable binding affinity for glutathione reductase and urase oxidase enzymes, glucose transporter 3 (GLUT 3), and kappa-opioid receptor, inferring potential antioxidant, hypoglycemic, and antidiarrheal properties, respectively. This is the first report of all of these phenolic compounds being isolated from this plant species and even the first demonstration of the plant stem extract's antioxidant, hypoglycemic, and antidiarrheal potentials. According to the current findings, the W. tinctoria stem could be a potential natural remedy for treating oxidative stress, hyperglycemia, and diarrhea. Nevertheless, further extensive investigation is crucial for thorough phytochemical screening and determining the precise mechanisms of action of the plant-derived bioactive metabolites against broad-spectrum molecular targets.


Asunto(s)
Hiperglucemia , Rubiaceae , Antidiarreicos , Antioxidantes/química , Apigenina , Benzaldehídos , Hidroxitolueno Butilado , Diarrea , Radicales Libres , Proteínas Facilitadoras del Transporte de la Glucosa , Glutatión Reductasa , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Quempferoles , Cloruro de Metileno , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Receptores Opioides
8.
Artículo en Inglés | MEDLINE | ID: mdl-35928245

RESUMEN

Medicinal plants have been crucial in treating various chronic ailments since ancient times. The objective of this study was to evaluate in vitro pharmacological properties of petroleum ether, chloroform, and ethyl acetate soluble fractions of ethanolic extract (leaf, bark, and root) of Heritiera fomes Buch. Ham., including the phytochemical screening of the plant. Thrombolytic and antiarthritic properties were assessed through the clot lysis and protein denaturation experimental method, correspondingly. Anthelmintic and insecticidal activities were studied against Pheretima posthuma and Tribolium castaneum, respectively. The phytochemical analysis exhibited numerous active phytochemicals in different solvent fractions. In thrombolytic investigation, among all crude extracts, ethanolic leaf extract showed the highest 33.12 ± 7.52% clot lysis as compared to standard streptokinase (67.77 ± 9.78%). In antiarthritic assay, all the tested samples exhibited noteworthy protein denaturation in dose-dependent manner (100-500 µg/mL), whereas the utmost percentage inhibition was noticed for chloroform extract of roots (63.28 ± 5.96% at 500 µg/mL). All crude extracts exhibited a significant anthelmintic activity in different concentrations (25-75 mg/mL) and revealed paralysis and death of earthworms in comparison with albendazole; ethanolic extract of the bark was found to be more potent at the highest dose. For the insecticidal test, ethanolic extract of the leaf showed the utmost mortality rate (73%). The outcomes of the investigation confirmed the potential thrombolytic, antiarthritic, anthelmintic, and insecticidal activities of the different extracts of H. fomes, and hence, advanced studies on the isolation and identification of active phytocompounds are highly needed for new drug development.

9.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889247

RESUMEN

Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like 'Euphorbia neriifolia', 'phytoconstituents', 'traditional uses', 'ethnopharmacological uses', 'infectious diseases', 'molecular mechanisms', 'COVID-19', 'bacterial infection', 'viral infection', etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, ß-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3ß-friedelanol, 3ß-acetoxy friedelane, 3ß-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and ß-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enfermedades Transmisibles Emergentes , Euphorbia , Enfermedades Transmisibles Emergentes/tratamiento farmacológico , Etnobotánica , Etnofarmacología , Humanos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/farmacología
10.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807270

RESUMEN

The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of the bark and the methanol extract of the seed pulp of W. coccinea through successive chromatographic techniques and were characterized as 3ß-acetyloxy-olean-12-en-28-ol (1), wrightiadione (2), 22ß-hydroxylupeol (3), and ß-sitosterol (4) by spectroscopic analysis. The aqueous fraction of the bark and chloroform fraction of the fruits provided the most potent antioxidant capacity (IC50 = 7.22 and 4.5 µg/mL, respectively) in DPPH free radical scavenging assay compared with the standard ascorbic acid (IC50 = 17.45 µg/mL). The methanol bark extract and the methanol fruit coat extract exerted anti-diarrheal activity by inhibiting 74.55 ± 0.67% and 77.78 ± 1.5% (mean ± SEM) of the diarrheal episode in mice, respectively, after four hours of loading the samples. In the hypoglycemic test, the methanol bark extract and the methanol fruit coat extract (400 mg/kg) produced a significant (p < 0.05) reduction in the blood glucose level in mice. Both doses of the plant extracts (200 mg/kg and 400 mg/kg) used in the study induced a significant (p < 0.05) increase in pain reaction time. The in vitro and in vivo findings were supported by the computational studies. The isolated compounds exhibited higher binding affinity compared with the standard drugs towards the active binding sites of glutathione reductase, epidermal growth factor receptor (EGFR), kappa opioid receptor, glucose transporter 3 (GLUT 3), Mu opioid receptor, and cyclooxygenase 2 (COX-2) proteins due to their potent antioxidant, cytotoxic, anti-diarrheal, hypoglycemic, and central and peripheral analgesic properties, respectively. The current findings concluded that W. coccinea might be a potential natural source for managing oxidative stress, diarrhea, hyperglycemia, and pain. Further studies are warranted for extensively phytochemical screening and establishing exact mechanisms of action.


Asunto(s)
Antioxidantes , Apocynaceae , Analgésicos/química , Animales , Antidiarreicos/química , Antioxidantes/química , Diarrea/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Metanol/análisis , Ratones , Dolor/tratamiento farmacológico , Corteza de la Planta/química , Extractos Vegetales/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-35497914

RESUMEN

The Sundarbans, a UNESCO world heritage site, is one of the largest mangrove forests in one stretch. Mangrove plants from this forest are little studied for their endophytic fungi. In this study, we isolated fourteen endophytic fungi from the plants Ceriops decandra and Avicennia officinalis collected from the Sundarbans. Five of them were identified as Aspergillus sp. and one as Penicillium sp. by macroscopic and microscopic observation. Antibacterial activity of the crude extracts obtained from these endophytes was determined against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using resazurin-based microtiter assay. The isolated endophytes showed varying degrees of antibacterial activity with MICs ranging between 5 and 0.078 mg/mL. Molecular identification of the most active endophyte revealed its identity as Aspergillus fumigatus obtained from the leaves of C. decandra. Acute toxicity study of the ethyl acetate extract of A. fumigatus in mice revealed no mortality even at the highest dose of 2000 mg/kg bodyweight, though some opposing results are found in the subacute toxicity study. The extract was subjected to silica gel and Sephadex column chromatography resulting in the isolation of three pure compounds. LC-MS analysis of these pure compounds revealed their identity as fumigaclavine C, azaspirofuran B, and fraxetin. This is the first report of fraxetin from A. fumigatus. All three identified compounds were previously reported for their antibacterial activity against different strains of both Gram-positive and Gram-negative bacteria. Therefore, the observed antibacterial activity of the ethyl acetate (EtOAc) extract of A. fumigatus could be due to the presence of these compounds. These results support the notion of investigating fungal endophytes from the Sundarbans for new antimicrobial compounds.

12.
J Ethnopharmacol ; 293: 115245, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35367330

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Peptic ulcer disease (PUD) ranks top among the most prominent gastrointestinal problems prevalent around the world. Long-term use of non-steroidal anti-inflammatory drugs, pathogenic infection by Helicobacter pylori, imbalances between gastrointestinal regulatory factors and pathological hyperacidity are major contributors towards the development of peptic ulcers. Although synthetic drugs of multiple pharmacological classes are abundantly available, inadequacy of such agents in ensuring complete recovery in not uncommon. Therefore, pharmacological explorations of herbal products including plant extracts and their respective isolated phytoconstituents, for potential gastroprotective and antiulcer properties, are regular practice among the scientific community. Moreover, the historical preferences of a significant share of world population towards herbal-based medication over modern synthetic drugs also contribute significantly to such endeavors. AIM OF THE REVIEW: This review has endeavored to present ethnomedicinal and pharmacological prospects of a significant number of authenticated plant species in terms of their capacity to exert gastroprotection and antiulcer activities both in vitro and in vivo. The information delineated along the way was further subjected to critical analysis to ascertain the possible future prospects of such findings into designing plant-derived products in future for the treatment of peptic ulcer. MATERIALS AND METHODS: Electronic version of prominent bibliographic databases, including Google Scholar, PubMed, Scopus, ScienceDirect, Wiley Online Library, SpringerLink, Web of Science, and MEDLINE were explored extensively for the identification and compilation of relevant information. The plant names and respective family names were verified through the Plant List (version 1.1) and World Flora Online 2021. All relevant chemical structures were verified through PubChem and SciFinder databases and illustrated with ChemDraw Ultra 12.0. RESULTS: A colossal number of 97 plant species categorized under 58 diverse plant families have been discussed in the review for their gastroprotective and antiulcer properties. In vivo illustrations of the pharmacological properties were achieved for almost all the species under consideration. 29 individual phytoconstituents from these sources were also characterized with similar pharmacological potentials. Majority of the plant extracts as well as their constituents were found to exert their gastroprotective effects through antioxidative pathway featuring both enzymatic and nonenzymatic mechanism. Moreover, active inhibition of acid secretion, upregulation of gastroprotective mediators and downregulation of pro-inflammatory cytokines, were also associated with a prominent number of plants or products thereof. CONCLUSIONS: Comparative evaluations of the plant sources for their antiulcer activities, both as individual and as combination formulations, are necessary to be conducted in human subjects under properly regulated clinical conditions. Moreover, the efficacy and safety of such products should also be evaluated against those of the currently available treatment options. This will further facilitate in ascertaining their suitability and superiority, if any, in the treatment of peptic ulcer diseases. Implementation of these endeavors may eventually lead to development of more efficient treatment options in the future.


Asunto(s)
Úlcera Péptica , Plantas Medicinales , Drogas Sintéticas , Etnofarmacología , Humanos , Medicina Tradicional , Úlcera Péptica/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
13.
Front Endocrinol (Lausanne) ; 13: 800714, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282429

RESUMEN

Diabetes, a chronic physiological dysfunction affecting people of different age groups and severely impairs the harmony of peoples' normal life worldwide. Despite the availability of insulin preparations and several synthetic oral antidiabetic drugs, there is a crucial need for the discovery and development of novel antidiabetic drugs because of the development of resistance and side effects of those drugs in long-term use. On the contrary, plants or herbal sources are getting popular day by day to the scientists, researchers, and pharmaceutical companies all over the world to search for potential bioactive compound(s) for the discovery and development of targeted novel antidiabetic drugs that may control diabetes with the least unwanted effects of conventional antidiabetic drugs. In this review, we have presented the prospective candidates comprised of either isolated phytochemical(s) and/or extract(s) containing bioactive phytoconstituents which have been reported in several in vitro, in vivo, and clinical studies possessing noteworthy antidiabetic potential. The mode of actions, attributed to antidiabetic activities of the reported phytochemicals and/or plant extracts have also been described to focus on the prospective phytochemicals and phytosources for further studies in the discovery and development of novel antidiabetic therapeutics.


Asunto(s)
Diabetes Mellitus , Plantas Medicinales , Diabetes Mellitus/tratamiento farmacológico , Descubrimiento de Drogas , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Estudios Prospectivos
14.
Heliyon ; 8(1): e08816, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35097233

RESUMEN

Steam inhalation therapy can be a contemporary approach for COVID-19 affected patients of all age groups to manage respiratory conditions, though it presently lacks the scientific backing to establish itself as a befitting practice. The age of COVID-19 has facilitated this traditional home remedy to resurface among the general mass as a helpful approach for the prevention and adjuvant treatment of the disease. In this review, the means of SARS-CoV-2 infection and impact of the parameters, namely steam inhalation and heat on such infection has been delineated via enumerating the effect of the parameters in the human body and against SARS-CoV-2. The literature search was conducted using PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, and CNKI Scholar databases. The keywords used in the survey include 'Steam inhalation', 'SARS-CoV-2', 'COVID-19', 'Clinical study', 'Mechanism of action', 'Traditional uses', 'Phytochemistry' and 'Adverse effects'. Clinical studies concerning steam inhalation by COVID-19 patients have been comprehended to demarcate the scientific obscurity of the practice. The safety profile of the procedure has also been outlined emphasizing evading measures against COVID-19 and other related disease states. To recapitulate, application of the steam inhalation with herbal concoctions and phytochemicals having folkloric prevalence as an inhalable remedy against respiratory illnesses has been explored in this review work to focus on a new aspect in the COVID-19 treatment paradigm using steam and progress of further research hither.

15.
Nat Prod Res ; 36(6): 1448-1453, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33624558

RESUMEN

Four new compounds (derriscandenon D (1), E (2), F (3), G (4)) and six known isoflavones (warangalone (5), millewanin E (6), rhynedlin A (7), 6,8-diprenylgenistein (8), isolupalbigenin (9), isoscandinone (10)) were isolated from the acetone extract of the branches of Derris scandens. These compounds were assayed for cell viability using the human lung carcinoma cell line A549, colorectal carcinoma cell line Colo205, epidermoid carcinoma cell line KB, the human acute lymphoblastic leukaemia cell line NALM-6, and human dermal fibroblasts. Compounds 2 and 3 significantly decreased the viability of KB cells, with IC50 values of 2.7 and 12.9 µM, respectively. In addition, compounds 2 and 3 reduced the mitochondrial membrane potential in KB cells. Compounds 2 and 3 strongly down-regulated the cell viability of cell lines KB and NALM-6, achieving IC50 values of 2.7 and 0.9 µM, respectively, compared with the positive control staurosporine at 1.25 and 0.01 µM, respectively.


Asunto(s)
Derris , Isoflavonas , Supervivencia Celular , Isoflavonas/farmacología , Potencial de la Membrana Mitocondrial , Extractos Vegetales
16.
BMC Complement Med Ther ; 21(1): 119, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845836

RESUMEN

BACKGROUND: Colocasia gigantea, locally named as kochu is well-known due to its various healing power. This research is to investigate the antidiarrheal, antimicrobial and antioxidant possibilities of the methanol soluble extract of Colocasia gigantea. METHODS: The antidiarrheal investigation was performed by using in vivo castor oil-induced diarrheal method whereas in vitro antimicrobial and antioxidant investigation have been implemented by disc diffusion and DPPH scavenging method respectively. Moreover, in silico studies were followed by molecular docking analysis of several secondary metabolites that were appraised with Schrödinger-Maestro v11.1 and Biovia Discovery Studio. RESULTS: The induction of plant extract (200 and 400 mg/kg, b.w, p.o) has minimized the castor oil mediated diarrhea by 16.96% (p < 0.01) and 38.89% (p < 0.001) respectively compared to control group. The methanol extract of C. gigantea showed mild sensitivity against almost all the tested strains but it shows high consistency of phenolic content and yielded 67.68 µg/mL of IC50 value in the DPPH test. In the PASS prediction, selected isolated compounds have demonstrated significant antidiarrheal and antimicrobial activity following the Lipinski drug rules which have ascertained efficacy with the compounds in molecular docking study. CONCLUSION: The results of this scientific research reflects that the methanol soluble extract of C. gigantea is safe and may provide possibilities of alleviation of diarrhea along with being a potential wellspring of antioxidant and antimicrobial agents which can be considered as an alternate source for exploration of new medicinal products in near future.


Asunto(s)
Colocasia , Extractos Vegetales/farmacología , Animales , Antibacterianos/farmacología , Antidiarreicos/farmacología , Antioxidantes/farmacología , Compuestos de Bifenilo , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Femenino , Concentración 50 Inhibidora , Masculino , Ratones , Simulación del Acoplamiento Molecular , Fitoterapia , Picratos , Hojas de la Planta
17.
Heliyon ; 7(2): e06249, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33681495

RESUMEN

OBJECTIVE: The present study was envisioned to develop Sunoon Zard a traditional Unani toothpowder into toothpaste form along with its physicochemical standardization and evaluation of anti microbial activity against oral pathogens by in vitro study. MATERIALS AND METHODS: Herbal extracts based powder was redesigned to toothpaste as per the Pharmacopoeial guidelines and its pharmaceutical evaluation was conceded as per the Indian Government Tooth Paste Specifications. In vitro study was done to evaluate the antibacterial activity by using agar well diffusion method against dental pathogens. Zone of Inhibition was taken as the end parameter against the test pathogens after appropriate incubation period. It was compared with Dimethyl sulphoxide (DMSO) used as solvent (0.01%) as Negative control whereas Ciprofloxacin 5µg/disk (standard antibiotic for gram positive) and Gentamicin 10µg/disk (standard antibiotic for gram negative) were used as Positive control. All the experiment was done as per the Clinical and Laboratory Standards Institute (CLSI) Guidelines in triplicates. RESULTS: Sunoon Zard was developed into toothpaste form and its physicochemical values were found to in consonance with the optimum values as mentioned in Bureau of Indian Standard. In vitro study of the Sunoon Zard toothpaste was found to be effective against various dental pathogens with specific sensitivity with good zone of inhibition towards gram negative bacterial strains viz. P.aeruginosa and K.pneuomoniae while among gram positive a significant inhibition was found against C.xerosis and S.viridans. CONCLUSION: The developed toothpaste from classical Unani herbal tooth powder will provide the better patient compliance. Moreover its scientific screening which exhibited potential antibacterial activity in controlling pathogenic oral microflora compared to the standard drugs also revalidated the claim of Unani Physicians that the Sunoon Zard is quite effective in various oro-dental disorders.

18.
J Ethnopharmacol ; 271: 113834, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33465439

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Gynura (Compositae) includes around 46 species and is native to the tropical regions of Southeast Asia, Africa and Australia. Many species within this genus are used in ethnomedicine to treat various disorders including skin diseases, injuries, ulcers, wounds, burns, sores, scalds, as well as for the management of diabetes, hypertension, hyperlipidemia, constipation, rheumatism, bronchitis and inflammation. AIM OF THE REVIEW: This review is an attempt to provide scientific information regarding the ethnopharmacology, phytochemistry, pharmacological and toxicological profiles of Gynura species along with the nomenclature, distribution, taxonomy and botanical features of the genus. A critical analysis has been undertaken to understand the current and future pharmaceutical prospects of the genus. MATERIALS & METHODS: Several electronic databases, including Google scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar, were explored as information sources. The Plant List Index was used for taxonomical authentications. SciFinder and PubChem assisted in the verification of chemical structures. RESULTS: A large number of phytochemical analyses on Gynura have revealed the presence of around 342 phytoconstituents including pyrrolizidine alkaloids, phenolic compounds, chromanones, phenylpropanoid glycosides, flavonoids, flavonoid glycosides, steroids, steroidal glycosides, cerebrosides, carotenoids, triterpenes, mono- and sesquiterpenes, norisoprenoids, oligosaccharides, polysaccharides and proteins. Several in vitro and in vivo studies have demonstrated the pharmacological potential of Gynura species, including antidiabetic, anti-oxidant, anti-inflammatory, antimicrobial, antihypertensive and anticancer activities. Although the presence of pyrrolizidine alkaloids within a few species has been associated with possible hepatotoxicity, most of the common species have a good safety profile. CONCLUSIONS: The importance of the genus Gynura both as a prominent contributor in ethnomedicinal systems as well as a source of promising bioactive molecules is evident. Only about one fourth of Gynura species have been studied so far. This review aims to provide some scientific basis for future endeavors, including in-depth biological and chemical investigations into already studied species as well as other lesser known species of Gynura.


Asunto(s)
Asteraceae/química , Medicina Tradicional , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , África , Animales , Asia Sudoriental , Asteraceae/clasificación , Australia , Humanos , Fitoquímicos/efectos adversos , Fitoquímicos/uso terapéutico , Extractos Vegetales/efectos adversos , Extractos Vegetales/uso terapéutico
19.
J Infect Dev Ctries ; 14(8): 924-928, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32903238

RESUMEN

INTRODUCTION: The persistent increase of resistance to existing antimalarials underscores the needs for new drugs. Historically, most of the successful antimalarial are derived from plants. The leaves of the S. cymosum is one of the plant materials used by traditional healers in malaria-endemic areas in Bangladesh for treatment of malaria. Here, we investigated the crude extract and its fractions against chloroquine (CQ)-sensitive 3D7, CQ-resistant Dd2, and artemisinin (ART)-resistant IPC 4912 Mondulkiri strains of Plasmodium falciparum. METHODOLOGY: The antimalarial activities were tested using HRP II based in-vitro antimalarial drug sensitivity ELISA described by WWARN and half inhibitory concentrations (IC50) were calculated by non-linear regression analysis using GraphaPad Prism. The cytotoxicity of the crude methanolic extract was assessed using the MTT assay on Vero cell line. RESULTS: The methanolic crude extract revealed promising activity against 3D7 (IC50 6.28 µg/mL), Dd2 (IC50 13.42 µg/mL), and moderate activity against IPC 4912 Mondulkiri (IC50 17.47 µg/mL). Among the fractionated portions, the chloroform fraction revealed highest activity against IPC 4912 Mondulkiri (IC50 1.65 µg/mL) followed by Dd2 (1.73 µg/mL) and 3D7 (2.39 µg/mL). The crude methanolic extract also demonstrated good selectivity with the selectivity indices of > 15.92, > 7.45, and > 6.91 against 3D7, Dd2, and IPC 4912, respectively when tested against Vero cell line. CONCLUSIONS: This is the first report on S. cymosum for its putative antimalarial activity, and is imperative to go for further phytochemical analyses in order to investigate possible novel antimalarial drug compound(s).


Asunto(s)
Antimaláricos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Plasmodium falciparum/efectos de los fármacos , Syzygium/química , Animales , Antimaláricos/toxicidad , Bangladesh , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Resistencia a Medicamentos/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/toxicidad , Células Vero
20.
Artículo en Inglés | MEDLINE | ID: mdl-31770097

RESUMEN

Background Commelina benghalensis Linn. (Family: Commelinaceae) is a common weed available in Bangladesh with several uses in traditional medicine. However, the chemical profile of this medicinal plant is scarce in relation to its medicinal uses. The aerial parts of this plant have been investigated for the isolation of secondary metabolites and evaluation of the biological activities. Methods Major phytochemical groups were analyzed using chromogenic reagents, whereas n-hexane soluble fractionates of the methanol extract were subjected to 1H nuclear magnetic resonance (NMR) spectroscopic analysis. The antioxidant property of the obtained compounds was evaluated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH). Results Dammara-12-en-3-one (CB-1), stigmasterol (CB-2) and 3 (2,3,4,5,6-pentahydroxy)-cinnamoyl dammara-12-ene (CB-3) were isolated from the n-hexane fractionate of methanol extract of C. benghalensis. In the study of DPPH radical scavenging activity, IC50 values were predicted to be 790.18, 4186.94 and 2001.16 µg/mL for CB-1, CB-2 and CB-3, respectively, whereas standard ascorbic acid showed IC50 at 1.26 µg/mL. Conclusions Two new dammarane-type triterpene (CB-1 and CB-3) and one phytosterol (CB-2) were identified in C. benghalensis with mild antioxidant property.


Asunto(s)
Antioxidantes/química , Commelina/química , Fitosteroles/química , Terpenos/química , Ácido Ascórbico/química , Compuestos de Bifenilo/química , Hexanos/química , Fitoquímicos/química , Extractos Vegetales/química , Plantas Medicinales/química , Triterpenos/química , Damaranos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA