Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-31427291

RESUMEN

The suboptimal effectiveness of ß-lactam antibiotics against Mycobacterium tuberculosis has hindered the utility of this compound class for tuberculosis treatment. However, the results of treatment with a second-line regimen containing meropenem plus a ß-lactamase inhibitor were found to be encouraging in a case study of extensively drug-resistant tuberculosis (M. C. Payen, S. De Wit, C. Martin, R. Sergysels, et al., Int J Tuberc Lung Dis 16:558-560, 2012, https://doi.org/10.5588/ijtld.11.0414). We hypothesized that the innate resistance of M. tuberculosis to ß-lactams is mediated in part by noncanonical accessory proteins that are not considered the classic targets of ß-lactams and that small-molecule inhibitors of those accessory targets might sensitize M. tuberculosis to ß-lactams. In this study, we screened an NIH small-molecule library for the ability to sensitize M. tuberculosis to meropenem. We identified six hit compounds, belonging to either the N-arylindole or benzothiophene chemotype. Verification studies confirmed the synthetic lethality phenotype for three of the N-arylindoles and one benzothiophene derivative. The latter was demonstrated to be partially bioavailable via oral administration in mice. Structure-activity relationship studies of both structural classes identified analogs with potent antitubercular activity, alone or in combination with meropenem. Transcriptional profiling revealed that oxidoreductases, MmpL family proteins, and a 27-kDa benzoquinone methyltransferase could be the targets of the N-arylindole potentiator. In conclusion, our compound-compound synthetic lethality screening revealed novel small molecules that were capable of potentiating the action of meropenem, presumably via inhibition of the innate resistance conferred by ß-lactam accessory proteins. ß-Lactam compound-compound synthetic lethality may be an alternative approach for drug-resistant tuberculosis.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mutaciones Letales Sintéticas/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , beta-Lactamas/farmacología , Animales , Antibacterianos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/metabolismo , Femenino , Meropenem/farmacología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
2.
Metallomics ; 11(3): 696-706, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30839007

RESUMEN

One potential source of new antibacterials is through probing existing chemical libraries for copper-dependent inhibitors (CDIs), i.e., molecules with antibiotic activity only in the presence of copper. Recently, our group demonstrated that previously unknown staphylococcal CDIs were frequently present in a small pilot screen. Here, we report the outcome of a larger industrial anti-staphylococcal screen consisting of 40 771 compounds assayed in parallel, both in standard and in copper-supplemented media. Ultimately, 483 had confirmed copper-dependent IC50 values under 50 µM. Sphere-exclusion clustering revealed that these hits were largely dominated by sulfur-containing motifs, including benzimidazole-2-thiones, thiadiazines, thiazoline formamides, triazino-benzimidazoles, and pyridinyl thieno-pyrimidines. Structure-activity relationship analysis of the pyridinyl thieno-pyrimidines generated multiple improved CDIs, with activity likely dependent on ligand/ion coordination. Molecular fingerprint-based Bayesian classification models were built using Discovery Studio and Assay Central, a new platform for sharing and distributing cheminformatic models in a portable format, based on open-source tools. Finally, we used the latter model to evaluate a library of FDA-approved drugs for copper-dependent activity in silico. Two anti-helminths, albendazole and thiabendazole, scored highly and are known to coordinate copper ions, further validating the model's applicability.


Asunto(s)
Antibacterianos , Cobre , Ensayos Analíticos de Alto Rendimiento/métodos , Aprendizaje Automático , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Teorema de Bayes , Cobre/química , Cobre/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Bibliotecas de Moléculas Pequeñas
3.
Am J Respir Crit Care Med ; 194(9): 1092-1103, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27104944

RESUMEN

RATIONALE: Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. OBJECTIVES: To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. METHODS: Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. MEASUREMENTS AND MAIN RESULTS: From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. CONCLUSIONS: Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.


Asunto(s)
Codón sin Sentido/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Animales , Línea Celular , Codón sin Sentido/genética , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Luciferasas/metabolismo , Ratas Endogámicas F344 , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Assay Drug Dev Technol ; 13(1): 44-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25710545

RESUMEN

High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories.


Asunto(s)
Bioensayo/instrumentación , Contención de Riesgos Biológicos/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Laboratorios , Tecnología Farmacéutica/instrumentación , Diseño de Fármacos , Diseño de Equipo , Análisis de Falla de Equipo , Robótica/instrumentación , Manejo de Especímenes/instrumentación
5.
J Med Chem ; 57(20): 8608-21, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25244572

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an emerging pathogenic alphavirus that can cause significant disease in humans. Given the absence of therapeutic options available and the significance of VEEV as a weaponized agent, an optimization effort was initiated around a quinazolinone screening hit 1 with promising cellular antiviral activity (EC50 = 0.8 µM), limited cytotoxic liability (CC50 > 50 µM), and modest in vitro efficacy in reducing viral progeny (63-fold at 5 µM). Scaffold optimization revealed a novel rearrangement affording amidines, specifically compound 45, which was found to potently inhibit several VEEV strains in the low nanomolar range without cytotoxicity (EC50 = 0.02-0.04 µM, CC50 > 50 µM) while limiting in vitro viral replication (EC90 = 0.17 µM). Brain exposure was observed in mice with 45. Significant protection was observed in VEEV-infected mice at 5 mg kg(-1) day(-1) and viral replication appeared to be inhibited through interference of viral nonstructural proteins.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Benzamidas/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Piperazinas/farmacología , Animales , Benzamidas/química , Evaluación Preclínica de Medicamentos/métodos , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Compuestos Heterocíclicos con 2 Anillos/química , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Piperazinas/química , Quinazolinonas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
6.
PLoS One ; 9(7): e96054, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24983234

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs), with over 100 million UTIs occurring annually throughout the world. Increasing antimicrobial resistance among UPEC limits ambulatory care options, delays effective treatment, and may increase overall morbidity and mortality from complications such as urosepsis. The polysaccharide capsules of UPEC are an attractive target a therapeutic, based on their importance in defense against the host immune responses; however, the large number of antigenic types has limited their incorporation into vaccine development. The objective of this study was to identify small-molecule inhibitors of UPEC capsule biogenesis. A large-scale screening effort entailing 338,740 compounds was conducted in a cell-based, phenotypic screen for inhibition of capsule biogenesis in UPEC. The primary and concentration-response assays yielded 29 putative inhibitors of capsule biogenesis, of which 6 were selected for further studies. Secondary confirmatory assays identified two highly active agents, named DU003 and DU011, with 50% inhibitory concentrations of 1.0 µM and 0.69 µM, respectively. Confirmatory assays for capsular antigen and biochemical measurement of capsular sugars verified the inhibitory action of both compounds and demonstrated minimal toxicity and off-target effects. Serum sensitivity assays demonstrated that both compounds produced significant bacterial death upon exposure to active human serum. DU011 administration in mice provided near complete protection against a lethal systemic infection with the prototypic UPEC K1 isolate UTI89. This work has provided a conceptually new class of molecules to combat UPEC infection, and future studies will establish the molecular basis for their action along with efficacy in UTI and other UPEC infections.


Asunto(s)
Antibacterianos , Cápsulas Bacterianas/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/metabolismo , Animales , Antibacterianos/química , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Infecciones por Escherichia coli/patología , Femenino , Humanos , Ratones , Infecciones Urinarias/patología
7.
Assay Drug Dev Technol ; 12(3): 155-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24735442

RESUMEN

Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 µM and selectivities >10. Three sulfonamide compounds with EC50 values <12 µM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.


Asunto(s)
Antivirales/administración & dosificación , Antivirales/química , Evaluación Preclínica de Medicamentos/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Virus Nipah/efectos de los fármacos , Virus Nipah/fisiología , Sulfonamidas/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Contención de Riesgos Biológicos/instrumentación , Relación Dosis-Respuesta a Droga , Diseño de Equipo , Análisis de Falla de Equipo , Robótica/instrumentación , Células Vero , Replicación Viral/fisiología
8.
Assay Drug Dev Technol ; 11(6): 382-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23906348

RESUMEN

Quorum sensing is a cell-cell communication process in bacteria that involves the production, release, and subsequent detection of chemical signal molecules called autoinducers. In Vibrio cholerae, multiple input signals activate the expression of the quorum sensing regulator HapR, which acts to repress the expression of virulence factors. We have shown that CRP, the cyclic adenosine monophosphate (cAMP) receptor protein, enhances quorum sensing by activating the biosynthesis of cholera autoinducer 1, the major signaling molecule that contributes to the activation of HapR. Thus, proquorum sensing CRP agonists could inhibit virulence and lead to new drugs to treat severe cholera. In this study, we show that expression of the quorum sensing-regulated luxCDABE operon can be used as a robust readout for CRP activity. Further, we describe and validate a highly specific cell-based luminescence high-throughput screening assay for proquorum sensing CRP ligands. A pilot screen of 9,425 compounds yielded a hit rate of 0.02%, one hit being cAMP itself. The Z' value for this assay was 0.76 and its coefficient of variance 8% for the positive control compound. To our knowledge, this is the first cell-based assay for ligands of the highly conserved CRP protein of Gram-negative bacteria. The use of this assay to screen large chemical libraries could identify lead compounds to treat cholera, as well as small molecules to probe ligand-receptor interactions in the CRP molecule.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Bacterias Gramnegativas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores de AMP Cíclico/agonistas , Aciltransferasas/genética , Proteínas Bacterianas/genética , Cólera/tratamiento farmacológico , Toxina del Cólera/antagonistas & inhibidores , Descubrimiento de Drogas , Ligandos , Operón , Oxidorreductasas/genética , Percepción de Quorum/efectos de los fármacos
9.
J Biomol Screen ; 17(3): 303-13, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22086726

RESUMEN

Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardiodegenerative disorder for which there are no proven effective treatments. FRDA is caused by decreased expression and/or function of the protein frataxin. Frataxin chaperones iron in the mitochondrial matrix for the assembly of iron-sulfur clusters (ISCs), which are prosthetic groups critical for the function of the Krebs cycle and the mitochondrial electron transport chain (ETC). Decreased expression of frataxin or the yeast frataxin orthologue, Yfh1p, is associated with decreased ISC assembly, mitochondrial iron accumulation, and increased oxidative stress, all of which contribute to mitochondrial dysfunction. Using yeast depleted of Yfh1p, a high-throughput screening (HTS) assay was developed in which mitochondrial function was monitored by reduction of the tetrazolium dye WST-1 in a growth medium with a respiration-only carbon source. Of 101 200 compounds screened, 302 were identified that effectively rescue mitochondrial function. To confirm activities in mammalian cells and begin understanding mechanisms of action, secondary screening assays were developed using murine C2C12 cells and yeast mutants lacking specific complexes of the ETC, respectively. The compounds identified in this study have potential relevance for other neurodegenerative disorders associated with mitochondrial dysfunction, such as Parkinson disease.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ataxia de Friedreich/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas de Unión a Hierro/genética , Animales , Línea Celular , Ataxia de Friedreich/tratamiento farmacológico , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sales de Tetrazolio/química , Sales de Tetrazolio/metabolismo , Frataxina
10.
J Biomol Screen ; 17(2): 194-203, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21948801

RESUMEN

The authors conducted a high-throughput screening campaign for inhibitors of SV40 large T antigen ATPase activity to identify candidate antivirals that target the replication of polyomaviruses. The primary assay was adapted to 1536-well microplates and used to screen the National Institutes of Health Molecular Libraries Probe Centers Network library of 306 015 compounds. The primary screen had an Z value of ~0.68, signal/background = 3, and a high (5%) DMSO tolerance. Two counterscreens and two secondary assays were used to prioritize hits by EC(50), cytotoxicity, target specificity, and off-target effects. Hits that inhibited ATPase activity by >44% in the primary screen were tested in dose-response efficacy and eukaryotic cytotoxicity assays. After evaluation of hit cytotoxicity, drug likeness, promiscuity, and target specificity, three compounds were chosen for chemical optimization. Chemical optimization identified a class of bisphenols as the most effective biochemical inhibitors. Bisphenol A inhibited SV40 large T antigen ATPase activity with an IC(50) of 41 µM in the primary assay and 6.2 µM in a cytoprotection assay. This compound class is suitable as probes for biochemical investigation of large T antigen ATPase activity, but because of their cytotoxicity, further optimization is necessary for their use in studying polyomavirus replication in vivo.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antígenos Transformadores de Poliomavirus/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Fenoles/farmacología , Animales , Antivirales/farmacología , Compuestos de Bencidrilo , Línea Celular , Chlorocebus aethiops , Perros , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Poliomavirus/enzimología , Bibliotecas de Moléculas Pequeñas/análisis
11.
Molecules ; 15(3): 1690-704, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20336008

RESUMEN

West Nile virus (WNV) is a positive sense, single-stranded RNA virus that can cause illness in humans when transmitted via mosquito vectors. Unfortunately, no antivirals or vaccines are currently available, and therefore efficient and safe antivirals are urgently needed. We developed a high throughput screen to discover small molecule probes that inhibit virus infection of Vero E6 cells. A primary screen of a 13,001 compound library at a 10 microM final concentration was conducted using the 384-well format. Z' values ranged from 0.54-0.83 with a median of 0.74. Average S/B was 17 and S/N for each plate ranged from 10.8 to 23.9. Twenty-six compounds showed a dose response in the HT screen and were further evaluated in a time of addition assay and in a titer reduction assay. Seven compounds showed potential as small molecule probes directed at WNV. The hit rate from the primary screen was 0.185% (24 compounds out of 13,001 compounds) and from the secondary screens was 0.053% (7 out of 13,001 compounds) respectively.


Asunto(s)
Antivirales/farmacología , Virus del Nilo Occidental/efectos de los fármacos , Animales , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Células Vero
12.
Tuberculosis (Edinb) ; 89(5): 354-63, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19783214

RESUMEN

There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.


Asunto(s)
Antituberculosos/farmacología , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Tuberculosis/tratamiento farmacológico , Análisis por Conglomerados , Humanos , Investigación , Tuberculosis/genética
13.
Tuberculosis (Edinb) ; 89(5): 334-53, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19758845

RESUMEN

There is an urgent need for the discovery and development of new antitubercular agents that target new biochemical pathways and treat drug resistant forms of the disease. One approach to addressing this need is through high-throughput screening of medicinally relevant libraries against the whole bacterium in order to discover a variety of new, active scaffolds that will stimulate new biological research and drug discovery. Through the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (www.taacf.org), a large, medicinally relevant chemical library was screened against M. tuberculosis strain H37Rv. The screening methods and a medicinal chemistry analysis of the results are reported herein.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Mycobacterium tuberculosis/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas , Tuberculosis/genética , Tuberculosis/terapia
14.
Antiviral Res ; 83(3): 267-73, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19559054

RESUMEN

Bluetongue virus (BTV) infection is one of the most important diseases of domestic livestock. There are no antivirals available against BTV disease. In this paper, we present the development, optimization and validation of an in vitro cell-based high-throughput screening (HTS) assay using the luminescent-based CellTiter-Glo reagent to identify novel antivirals against BTV. Conditions of the cytopathic effect (CPE)-based assay were optimized at cell density of 5000 cells/well in medium containing 1% FBS and a multiplicity of infection at 0.01 in 384-well plate, with Z'-values > or = 0.70, Coefficient of Variations > or = 5.68 and signal-to-background ratio > or = 7.10. This assay was further validated using a 9532 compound library. The fully validated assay was then used to screen the 194,950 compound collection, which identified 693 compounds with >30% CPE inhibition. The 10-concentration dose response assay identified 185 structures with IC(50) < or =100 microM, out of which 42 compounds were grouped into six analog series corresponding to six scaffolds enriched within the active set compared to their distribution in the library. The CPE-based assay development demonstrated its robustness and reliability, and its application in the HTS campaign will make significant contribution to the antiviral drug discovery against BTV disease.


Asunto(s)
Antivirales/farmacología , Virus de la Lengua Azul/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Animales , Línea Celular , Cricetinae , Efecto Citopatogénico Viral , Fluorescencia , Concentración 50 Inhibidora , Estructura Molecular
15.
J Biomol Screen ; 13(9): 879-87, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18812571

RESUMEN

Using a highly reproducible and robust cell-based high-throughput screening (HTS) assay, the authors screened a 100,000-compound library at 14- and 114-microM compound concentration against influenza strain A/Udorn/72 (H3N2). The "hit" rates (>50% inhibition of the viral cytopathic effect) from the 14- and 114-microM screens were 0.022% and 0.38%, respectively. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen at the lower concentration yielded 3 compounds, which displayed moderate activity (SI(50) = 10-49). Intriguingly, the screen at the higher concentration revealed several additional hits. Two of these hits were highly active with an SI(50) > 50. Time of addition experiments revealed 1 compound that inhibited early and 4 other compounds that inhibited late in the virus life cycle, suggesting they affect entry and replication, respectively. The active compounds represent several different classes of molecules such as carboxanilides, 1-benzoyl-3-arylthioureas, sulfonamides, and benzothiazinones, which have not been previously identified as having antiviral/anti-influenza activity.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Subtipo H3N2 del Virus de la Influenza A/química , Animales , Automatización , Línea Celular , Química Farmacéutica/métodos , Perros , Diseño de Fármacos , Concentración 50 Inhibidora , Modelos Químicos , Ribavirina/farmacología , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA