Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta Med ; 90(4): 305-315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373705

RESUMEN

Checkpoint blockade immunotherapy has revolutionized cancer treatment, with monoclonal antibodies targeting immune checkpoints, yielding promising clinical benefits. However, with the advent of resistance to immune checkpoint inhibitor treatment in clinical trials, developing next-generation antibodies with potentially increased efficacy is critical. Here, we aimed to generate a recombinant bispecific monoclonal antibody for dual inhibition of programmed cell death protein 1/programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 axes. The plant system was used as an alternative platform for bispecific monoclonal antibody production. Dual variable domain immunoglobulin atezolizumab × 2C8 is a plant-derived bispecific monoclonal antibody that combines both programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 blockade into a single molecule. Dual variable domain immunoglobulin atezolizumab × 2C8 was transiently expressed in Nicotiana benthamiana and the expression level was determined to be the highest after 4 days of infiltration. The size and assembly of the purified bispecific monoclonal antibody were determined, and its function was investigated in vitro and in vivo. The molecular structures of plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 are as expected, and it was mostly present as a monomer. The plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 showed in vitro binding to programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 proteins. The antitumor activity of plant-produced bispecific monoclonal antibody was tested in vivo by treating humanized Balb/c mice bearing a CT26 colorectal tumor. Plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 significantly inhibited tumor growth by reducing tumor volume and weight. Body weight changes indicated that the plant-produced bispecific monoclonal antibody was safe and tolerable. Overall, this proof of concept study demonstrated the viability of plants to produce functional plant-based bispecific immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Colorrectales , Neoplasias , Ratones , Animales , Antígeno CTLA-4/uso terapéutico , Antígeno B7-H1/uso terapéutico , Ligandos , Neoplasias/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico
2.
Plant Cell Rep ; 40(4): 723-733, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33582859

RESUMEN

KEY MESSAGE: Plant expression platform is the new source of immunoglobulin G (IgG) toward small low-molecular-weight targets. The plant-made monoclonal antibody-based immunoassay exhibits comparable analytical performance with hybridoma antibody. Immunoassays for small molecules are efficiently applied for monitoring of serum therapeutic drug concentration, food toxins, environmental contamination, etc. Immunoglobulin G (IgG) is usually produced using hybridoma cells, which requires complicated procedures and expensive equipment. Plants can act as alternative and economic hosts for IgG production. However, the production of free hapten (low-molecular-weight target)-recognizing IgG from plants has not been successfully developed yet. The current study aimed at creating a plant platform as an affordable source of IgG for use in immunoassays and diagnostic tools. The functional IgG was expressed in Nicotiana benthamiana leaves infiltrated with Agrobacterium tumefaciens strain GV3101 with recombinant geminiviral vectors (pBY3R) occupying chimeric anti-miroestrol IgG genes. The appropriate assembly between heavy and light chains was achieved, and the yield of expression was 0.57 µg/g fresh N. benthamiana leaves. The binding characteristics of the IgG to miroestrol and binding specificity to related compounds, such as isomiroestrol and deoxymiroestrol, were similar to those of hybridoma-produced IgG (monoclonal antibody, mAb). The plant-based mAbs exhibited high sensitivity for miroestrol (IC50, 23.2 ± 2.1 ng/mL), precision (relative standard deviation ≤ 5.01%), and accuracy (97.8-103% recovery), as determined using quantitative enzyme-linked immunosorbent assay. The validated enzyme-linked immunosorbent assay was applicable to determine miroestrol in plant samples. Overall, the plant-produced functional IgG conserved the binding activity and specificity of the parent IgG derived from mammalian cells. Therefore, the plant expression system may be an efficient and affordable platform for the production of antibodies against low-molecular-weight targets in immunoassays.


Asunto(s)
Inmunoensayo/métodos , Inmunoglobulina G/genética , Nicotiana/genética , Ingeniería de Proteínas/métodos , Esteroides/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/inmunología , Extractos Vegetales/análisis , Plantas Modificadas Genéticamente , Pueraria/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Esteroides/análisis
3.
Planta Med ; 83(18): 1412-1419, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28575911

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro. These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Infecciones por Coronavirus/veterinaria , Lactuca/inmunología , Nicotiana/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/prevención & control , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/genética , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Lactuca/genética , Lactuca/virología , Agricultura Molecular , Pruebas de Neutralización/veterinaria , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Planticuerpos/genética , Planticuerpos/inmunología , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Nicotiana/genética , Nicotiana/virología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA