Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 182: 106283, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662629

RESUMEN

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Asunto(s)
Artritis Gotosa , Mangifera , Extractos Vegetales , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ciclooxigenasa 2/metabolismo , Mangifera/química , Ratones , Extractos Vegetales/farmacología , Linfocitos T Reguladores , Células Th17
2.
Biomed Pharmacother ; 139: 111579, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33845375

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia worldwide, characterized by the deposition of neurofibrillary tangles and amyloid-ß (Aß) peptides in the brain. Additionally, increasing evidence demonstrates that a neuroinflammatory state and oxidative stress, iron-dependent, play a crucial role in the onset and disease progression. Besides conventional therapies, the use of natural-based products represents a future medical option for AD treatment and/or prevention. We, therefore, evaluated the effects of a ribonucleotides-based ingredient (Ribodiet®) in a non-genetic mouse model of AD. To this aim, mice were injected intracerebroventricularly (i.c.v.) with Aß1-42 peptide (3 µg/3 µl) and after with Ribodiet® (0.1-10 mg/mouse) orally (p.o.) 3 times weekly for 21 days following the induction of experimental AD. The mnemonic and cognitive decline was then evaluated, and, successively, we have assessed ex vivo the modulation of different cyto-chemokines on mice brain homogenates. Finally, the level of GFAP, S100ß, and iron-related metabolic proteins were monitored as markers of reactive gliosis, neuro-inflammation, and oxidative stress. Results indicate that Ribodiet® lessens oxidative stress, brain inflammation, and amyloid pathology via modulation of iron-related metabolic proteins paving the way for its rationale use for the treatment of AD and other age-related diseases.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Angiopatía Amiloide Cerebral/prevención & control , Suplementos Dietéticos , Encefalitis/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ribonucleótidos/uso terapéutico , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores , Angiopatía Amiloide Cerebral/psicología , Dieta , Encefalitis/psicología , Gliosis/prevención & control , Inyecciones Intraventriculares , Masculino , Ratones , Proteínas de Hierro no Heme/metabolismo , Fragmentos de Péptidos , Desempeño Psicomotor/efectos de los fármacos , Ribonucleótidos/farmacología
3.
Molecules ; 25(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353211

RESUMEN

Several natural-based compounds and products are reported to possess anti-inflammatory and immunomodulatory activity both in vitro and in vivo. The primary target for these activities is the inhibition of eicosanoid-generating enzymes, including phospholipase A2, cyclooxygenases (COXs), and lipoxygenases, leading to reduced prostanoids and leukotrienes. Other mechanisms include modulation of protein kinases and activation of transcriptases. However, only a limited number of studies and reviews highlight the potential modulation of the coupling enzymatic pathway COX-2/mPGES-1 and Th17/Treg circulating cells. Here, we provide a brief overview of natural products/compounds, currently included in the Italian list of botanicals and the BELFRIT, in different fields of interest such as inflammation and immunity. In this context, we focus our opinion on novel therapeutic targets such as COX-2/mPGES-1 coupling enzymes and Th17/Treg circulating repertoire. This paper is dedicated to the scientific career of Professor Nicola Mascolo for his profound dedication to the study of natural compounds.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades Autoinmunes/tratamiento farmacológico , Productos Biológicos/farmacología , Ciclooxigenasa 1/metabolismo , Inflamación/tratamiento farmacológico , Antiinflamatorios/química , Enfermedades Autoinmunes/metabolismo , Productos Biológicos/química , Terapias Complementarias , Ciclooxigenasa 2/metabolismo , Humanos , Inflamación/metabolismo , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Células Th17
4.
Biomed Pharmacother ; 126: 110042, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32203893

RESUMEN

Medicinal plants from traditional chinese medicine are used increasingly worldwide for their benefits to health and quality of life for the relevant clinical symptoms related to pain. Among them, Salvia miltiorrhiza Bunge is traditionally used in asian countries as antioxidant, anticancer, anti-inflammatory and analgesic agent. In this context, several evidences support the hypothesis that some tanshinones, in particular cryptotanshinone (CRY), extracted from the roots (Danshen) of this plant exhibit analgesic actions. However, it is surprisingly noted that no pharmacological studies have been carried out to explore the possible analgesic action of this compound in terms of modulation of peripheral and/or central pain. Therefore, in the present study, by using peripheral and central pain models of nociception, such as tail flick and hot plate test, the analgesic effect of CRY in mice was evaluated. Successively, by the aim of a computational approach, we have evaluated the interaction mode of this diterpenoid on opioid and cannabinoid system. Finally, CRY was dosed in mice serum by an HPLC method validated according to European Medicines Agency guidelines validation rules. Here, we report that CRY displayed anti-nociceptive activity on both hot plate and tail flick test, with a prominent long-lasting peripheral analgesic effect. These evidences were indirectly confirmed after the daily administration of the tanshinone for 7 and 14 days. In addition, the analgesic effect of CRY was reverted by naloxone and cannabinoid antagonists and amplified by arginine administration. These findings were finally supported by HPLC and docking studies, that revealed a noteworthy presence of CRY on mice serum 1 h after its intraperitoneal administration and a possible interaction of tested compound on µ and k receptors. Taken together, these results provide a new line of evidences showing that CRY can produce analgesia against various phenotypes of nociception with a mechanism that seems to be related to an agonistic activity on opioid system.


Asunto(s)
Analgésicos/metabolismo , Analgésicos/farmacología , Fenantrenos/metabolismo , Fenantrenos/farmacología , Analgésicos/química , Animales , Humanos , Masculino , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Dimensión del Dolor , Fenantrenos/química , Conformación Proteica , Receptores Opioides/química , Receptores Opioides/metabolismo
5.
Molecules ; 24(1)2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609661

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are classified as two lung complications arising from various conditions such as sepsis, trauma, and lung inflammation. Previous studies have shown that the extract of the leaves of Portulaca oleracea (PO) possesses anti-inflammatory and anti-oxidant activities. In the present study, the effects of PO (50⁻200 mg/kg) and dexamethasone (Dexa; 1.5 mg/kg) on lipopolysaccharide (LPS)-induced ALI were investigated. Subsequentially, the lung wet/dry ratio; white blood cells (WBC); levels of nitric oxide (NO); myeloperoxidase (MPO); malondialdehyde (MDA); thiol groups formation; super oxide dismutase (SOD) and catalase (CAT) activities; and levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, IL-10, prostaglandin E2 (PGE2), and transforming growth factor (TGF)-ß in the broncho alveolar lavage fluid (BALF) were evaluated in order to demonstrate the anti-oxidant and anti-inflammatory activity of PO. Our results show that PO suppresses lung inflammation by the reduction of IL-ß, IL-6, TNF-α, PGE2, and TGF-ß, as well as by the increase of IL-10 levels. We also found that PO improves the level of WBC, MPO, and MDA, as well as thiol group formation and SOD and CAT activities, compared with the LPS group. The results of our investigation also show that PO significantly decreased the lung wet/dry ratio as an index of interstitial edema. Taken together, our findings reveal that PO extract dose-dependently displays anti-oxidant and anti-inflammatory activity against LPS-induced rat ALI, paving the way for rational use of PO as a protective agent against lung-related inflammatory disease.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Portulaca/química , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Animales , Biomarcadores , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/efectos adversos , Masculino , Tamaño de los Órganos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA