Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Probiotics Antimicrob Proteins ; 13(2): 367-374, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33000419

RESUMEN

The present study has been designed to improve the activity of endophytic Bacillus amyloliquefaciens BmB1 against Pythium aphanidermatum through the culture supplementation with carbon sources, nitrogen sources and zinc oxide nanoparticles (ZnONPs). From the results of the study, supplementation with glucose (45 g/L), yeast extract (7.5 g/L) and ZnONPs (5 mg/L) were found to enhance the antifungal activity of B. amyloliquefaciens BmB1. This was also confirmed by comparative statistical analysis with experimental control. Further LC-Q-TOF-MS analysis of extracts of B. amyloliquefaciens BmB1 cultured with supplements showed a remarkable modulation of its lipopeptide profile. The blend of lipopeptides enhanced during the culture supplementation of B. amyloliquefaciens BmB1 as evidenced by the mass spectrometric analysis can consider to be the basis of its increased activity against P. aphanidermatum. As Bacillus spp. are well known for their biocontrol activities, the results of the study offer ways to improve its agricultural applications.


Asunto(s)
Antibiosis , Bacillus amyloliquefaciens , Suplementos Dietéticos , Pythium , Bacillus amyloliquefaciens/fisiología , Medios de Cultivo/química , Lipopéptidos/química , Probióticos
2.
Pest Manag Sci ; 77(2): 1035-1041, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33002299

RESUMEN

BACKGROUND: Lipopeptides from the Bacillus spp. possess an excellent spectrum of antimicrobial properties which make them suitable candidates to be explored for the food, agricultural, pharmaceutical and biotechnological applications. As the low yield of the lipopeptides limits their applications, methods to enhance their production are highly significant. RESULTS: In this study, extracts prepared from endophytic Bacillus sp. Fcl1 cultured in the presence of various supplements were screened for antifungal activity against Pythium aphanidermatum. From the results, the supplementation of carbon sources and zinc oxide nanoparticles (ZnONPs) was found to have an enhancement effect on the antifungal activity of Bacillus sp. Fcl1. Among these, the highest antifungal activity (73.2%) could be observed for the Fcl1 sample cultured with 5 mg L-1 of ZnONP supplementation. The growth of Fcl1 in the presence of ZnONPs also indicated its compatibility with the nano-supplement in the concentration range used. By liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) analysis, the synthesis of increased numbers of lipopeptide surfactin derivatives could be identified from the extracts of Fcl1 prepared from the carbon sources and ZnONP-supplemented cultures. In addition to the surfactin derivatives, the presence of another lipopeptide iturin was also detected from the extracts of Fcl1 cultured with ZnONPs. CONCLUSION: ZnONP supplementation was found to enhance antifungal activity and lipopeptide production in the Bacillus sp. Fcl1. The use of nanoparticles to enhance the antifungal mechanisms of Fcl1 as observed in the study provides novel insights to explore its applications for sustainable agricultural productivity.


Asunto(s)
Bacillus , Nanopartículas , Óxido de Zinc , Antifúngicos/farmacología , Suplementos Dietéticos , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA