Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 653: 83-92, 2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-36863212

RESUMEN

Proteins become S-glutathionylated as a result of the derivatization of their cysteine thiols with the thiolate anion derivative of glutathione; this process is frequently linked to diseases and protein misbehavior. Along with the other well-known oxidative modifications like S-nitrosylation, S-glutathionylation has quickly emerged as a major contributor to a number of diseases, with a focus on neurodegeneration. The immense clinical significance of S-glutathionylation in cell signaling and the genesis of diseases are progressively coming to light with advanced research, which is also creating new opportunities for prompt diagnostics that utilize this phenomenon. In-depth investigation in recent years has revealed other significant deglutathionylases in addition to glutaredoxin, necessitating the hunt for their specific substrates. The precise catalytic mechanisms of these enzymes must also be understood, along with how the intracellular environment affects their impact on protein conformation and function. These insights must then be extrapolated to the understanding of neurodegeneration and the introduction of novel and clever therapeutic approaches to clinics. Clarifying the importance of the functional overlap of glutaredoxin and other deglutathionylases and examining their complementary functions as defense systems in the face of stress are essential prerequisites for predicting and promoting cell survival under high oxidative/nitrosative stress.


Asunto(s)
Glutarredoxinas , Procesamiento Proteico-Postraduccional , Glutarredoxinas/metabolismo , Proteínas/metabolismo , Glutatión/metabolismo , Cisteína/metabolismo , Oxidación-Reducción , Estrés Oxidativo
2.
Asian J Psychiatr ; 76: 103133, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35551878

RESUMEN

BACKGROUND: Attention Deficit/ Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental psychiatric disorders of childhood. Treatment of ADHD includes medications and Behavioural interventions. Neurofeedback, a type of biofeedback, has been found to be useful in ADHD. It helps patients to control their brain waves consciously. However, it is not yet conclusive if it is efficacious in comparison to behavioural management training and medication. AIM: To compare the efficacy of neurofeedback training, behaviour management including attention enhancement training and medication in children with ADHD. METHOD: Ninety children between 6 and 12 years with ADHD were taken and randomly divided into 3 treatment groups equally- neurofeedback, behaviour management and medication (methylphenidate). Conners 3-P Short Scale was applied for baseline assessment. The respective interventions were given and follow up was done at the end of 3 months by using Conners 3-P Short scale to assess the improvement in the symptoms. There were 6 dropouts, the final sample size was 84. RESULTS: The medication group showed the greatest reduction of symptoms in inattention, hyperactivity, executive functioning domain (core symptoms of ADHD). No statistically significant difference was observed between Neurofeedback and Behaviour Management in these domains. Learning problems improved in all three groups, neurofeedback being the most effective followed by medication. Both Neurofeedback and Medication groups showed similar effect which was higher than the Behavioural Management group in Peer Relation. CONCLUSION: Improvement in core ADHD symptoms have been observed with all 3 interventions with medication showing the greatest improvement Neurofeedback has been superior for learning problems. Thus, Neurofeedback can be an independent or combined intervention tool for children with ADHD in outpatient department of Psychiatry.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Neurorretroalimentación , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Niño , Estudios de Seguimiento , Humanos , Metilfenidato/uso terapéutico , Resultado del Tratamiento
3.
J Ayurveda Integr Med ; 13(2): 100449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34054246

RESUMEN

BACKGROUND: The recent outbreak of the novel SARS-CoV-2 across the globe and the absence of specific drug against this virus lead the scientific community to look into some alternative indigenous treatments. India as a hub of Ayurvedic and medicinal plants can shed light on its treatment using specific active bio-molecules from these plants. OBJECTIVES: Keeping our herbal resources in mind, we were interested to inquire whether some phytochemicals from Indian spices and medicinal plants can be used as alternative therapeutic agents in contrast to synthetic drugs. MATERIALS AND METHODS: We used in silico molecular docking approach to test whether bioactive molecules of herbal origin such as hyperoside, nimbaflavone, ursolic acid, 6-gingerol, 6-shogaol and 6-paradol, curcumin, catechins and epigallocatechin, α-Hederin, piperine could bind and potentially block the Mproenzyme of the SARS-CoV-2 virus. RESULTS: Ursolic acid showed the highest docking score (-8.7 kcal/mol) followed by hyperoside (-8.6 kcal/mol), α-Hederin (-8.5 kcal/mol) and nimbaflavone (-8.0 kcal/mol). epigallocatechin, catechins, and curcumin also exhibited high binding affinity (Docking score -7.3, -7.1 and -7.1 kcal/mol) with the Mpro. The remaining tested phytochemicals exhibited moderate binding and inhibitory effects. CONCLUSION: This finding provides a basis for biochemical assay of tested bioactive molecules on SARS-CoV-2 virus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA