Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Sci Technol ; 57(32): 11988-11998, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515555

RESUMEN

Photochemical weathering transforms petroleum oil and changes its bulk physical properties, as well as its partitioning into seawater. This transformation process is likely to occur in a cold water marine oil spill, but little is known about the behavior of photochemically weathered oil in cold water. We quantified the effect of photochemical weathering on oil properties and partitioning across temperatures. Compared to weathering in the dark, photochemical weathering increases oil viscosity and water-soluble content, decreases oil-seawater interfacial tension, and slightly increases density. Many of these photochemical changes are much larger than changes caused by evaporative weathering. Further, the viscosity and water-soluble content of photochemically weathered oil are more temperature-sensitive compared to evaporatively weathered oil, which changes the importance of key fate processes in warm versus cold environments. Compared to at 30 °C, photochemically weathered oil at 5 °C would have a 16× higher viscosity and a 7× lower water-soluble content, resulting in lower entrainment and dissolution. Collectively, the physical properties and thus fate of photochemically weathered oil in a cold water spill may be substantially different from those in a warm water spill. These differences could affect the choice of oil spill response options in cold, high-light environments.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Temperatura , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología) , Agua de Mar/química , Agua
2.
Crit Rev Anal Chem ; 53(8): 1638-1697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35254870

RESUMEN

Analytical techniques for chemical analysis of oil, oil photochemical and biological transformation products, and dispersants and their biodegradation products benefited significantly from research following the 2010 Deepwater Horizon (DWH) disaster. Crude oil and weathered-oil matrix reference materials were developed based on the Macondo well oil and characterized for polycyclic aromatic hydrocarbons, hopanes, and steranes for use to assure and improve the quality of analytical measurements in oil spill research. Advanced gas chromatography (GC) techniques such as comprehensive two-dimensional GC (GC × GC), pyrolysis GC with mass spectrometry (MS), and GC with tandem MS (GC-MS/MS) provide a greater understanding at the molecular level of composition and complexity of oil and weathering changes. The capabilities of high-resolution MS (HRMS) were utilized to extend the analytical characterization window beyond conventional GC-based methods to include polar and high molecular mass components (>400 Da) and to provide new opportunities for discovery, characterization, and investigation of photooxidation and biotransformation products. Novel separation approaches to reduce the complexity of the oil and weathered oil prior to high-resolution MS and advanced fluorescence spectrometry have increased the information available on spilled oil and transformation products. HRMS methods were developed to achieve the required precision and sensitivity for detection of dispersants and to provide molecular-level characterization of the complex surfactants. Overall, research funding following the DWH oil spill significantly advanced and expanded the use of analytical techniques for chemical analysis to support petroleum and dispersant characterization and investigations of fate and effects of not only the DWH oil spill but future spills.


Asunto(s)
Desastres , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas en Tándem , Petróleo/análisis , Contaminantes Químicos del Agua/análisis
3.
Environ Pollut ; 314: 120283, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36180002

RESUMEN

The main objective of this study was to investigate the 2019 and 2022 oil spill events that occurred off the coast of the State of Ceará, Northeastern Brazil. To further assess these mysterious oil spills, we investigated whether the oils stranded on the beaches of Ceará in 2019 and 2022 had the same origin, whether their compositional differences were due to weathering processes, and whether the materials from both were natural or industrially processed. We collected oil samples in October 2019 and January 2022, soon after their appearance on the beaches. We applied a forensic environmental geochemistry approach using both one-dimensional and two-dimensional gas chromatography to assess chemical composition. The collected material had characteristics of crude oil and not refined oils. In addition, the 2022 oil samples collected over 130 km of the east coast of Ceará had a similar chemical profile and were thus considered to originate from the same source. However, these oils had distinct biomarker profiles compared to those of the 2019 oils, including resistant terpanes and triaromatic steranes, thus excluding the hypothesis that the oil that reached the coast of Ceará in January 2022 is related to the tragedy that occurred in 2019. From a geochemical perspective, the oil released in 2019 is more thermally mature than that released in 2022, with both having source rocks with distinct types of organic matter and depositional environments. As the coast of Ceará has vast ecological diversity and Marine Protected Areas, the possibility of occasional oil spills in the area causing severe environmental pollution should be investigated from multiple perspectives, including forensic environmental geochemistry.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Brasil , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Petróleo/análisis , Aceites , Biomarcadores
4.
Mar Environ Res ; 175: 105569, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35248985

RESUMEN

Crude oil released into the environment undergoes weathering processes that gradually change its composition and toxicity. Co-exposure to petroleum mixtures and other stressors, including ultraviolet (UV) radiation, may lead to synergistic effects and increased toxicity. Laboratory studies should consider these factors when testing the effects of oil exposure on aquatic organisms. Here, we study transcriptomic responses of the estuarine sea anemone Nematostella vectensis to naturally weathered oil, with or without co-exposure to environmental levels of UV radiation. We find that co-exposure greatly enhances the response. We use bioinformatic analyses to identify molecular pathways implicated in this response, which suggest phototoxicity and oxidative damage as mechanisms for the enhanced stress response. Nematostella's stress response shares similarities with the vertebrate oxidative stress response, implying deep conservation of certain stress pathways in animals. We show that exposure to weathered oil along with surface-level UV exposure has substantial physiological consequences in a model cnidarian.


Asunto(s)
Petróleo , Anémonas de Mar , Animales , Organismos Acuáticos , Petróleo/metabolismo , Petróleo/toxicidad , Anémonas de Mar/fisiología , Rayos Ultravioleta , Tiempo (Meteorología)
5.
Nat Microbiol ; 6(4): 489-498, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33526885

RESUMEN

Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean's microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage.


Asunto(s)
Hidrocarburos/metabolismo , Océanos y Mares , Agua de Mar/microbiología , Alcanos/análisis , Alcanos/metabolismo , Biodegradación Ambiental , Cianobacterias/metabolismo , Cianobacterias/fisiología , Hidrocarburos/análisis , Microbiota , Petróleo/metabolismo , Contaminación por Petróleo , Agua de Mar/química
6.
Mar Pollut Bull ; 155: 111056, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32469752

RESUMEN

The release of oil and gas at Mississippi Canyon Block 20 into the Gulf of Mexico has vexed response officials since 2004 when a regional seafloor failure toppled the Taylor Energy Company platform. Despite the completion of nine intervention wells, releases continue from the seafloor, mostly captured by a recently installed containment system. Toward informing resolution, this work applies chemical forensic and statistical analyses to surface sheens, sediments, and reservoir oil samples. Our results indicate sheens are chemically heterogeneous, contain remnant synthetic hydrocarbons likely discharged from well interventions prior to 2012, and require mixing of multiple chemically-distinct oil groups to explain observed variability in diagnostic ratios. Given the respite and opportunity afforded by containment we suggest leveraging ongoing collection activities to assess release dynamics, as well as engaging the National Academies of Science, Engineering, and Medicine, to evaluate potential solutions, associated risks, and to consider policy ramifications.


Asunto(s)
Contaminación por Petróleo/análisis , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Sedimentos Geológicos , Golfo de México , Hidrocarburos/análisis , Mississippi
7.
PLoS One ; 14(3): e0213464, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30883566

RESUMEN

Prior to Hurricane Isaac making landfall along the Gulf of Mexico coast in August 2012, local and state officials were concerned that the hurricane would mobilize submerged oiled-materials from the Deepwater Horizon (DWH) spill. In this study, we investigated materials washed ashore following the hurricane to determine if it affected the chemical composition or density of oil-containing sand patties regularly found on Gulf Coast beaches. While small changes in sand patty density were observed in samples collected before and after the hurricane, these variations appear to have been driven by differences in sampling location and not linked to the passing of Hurricane Isaac. Visual and chemical analysis of sand patties confirmed that the contents was consistent with oil from the Macondo well. Petroleum hydrocarbon signatures of samples collected before and after the hurricane showed no notable changes. In the days following Hurricane Isaac, dark-colored mats were also found on the beach in Fort Morgan, AL, and community reports speculated that these mats contained oil from the DWH spill. Chemical analysis of these mat samples identified n-alkanes but no other petroleum hydrocarbons. Bulk and δ13C organic carbon analyses indicated mat samples were comprised of marshland peat and not related to the DWH spill. This research indicates that Hurricane Isaac did not result in a notable change the composition of oil delivered to beaches at the investigated field sites. This study underscores the need for improved communications with interested stakeholders regarding how to differentiate oiled from non-oiled materials. This is especially important given the high cost of removing oiled debris and the increasing likelihood of false positives as oiled-materials washing ashore from a spill become less abundant over time.


Asunto(s)
Tormentas Ciclónicas , Desastres , Contaminación por Petróleo/análisis , Alabama , Alcanos/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Golfo de México , Hidrocarburos/análisis , Petróleo/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 52(13): 7250-7258, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29812924

RESUMEN

About half of the surface oil floating on the Gulf of Mexico in the aftermath of the 2010 Deepwater Horizon spill was transformed into oxygenated hydrocarbons (OxHC) within days to weeks. These OxHC persist for years in oil/sand aggregates in nearshore and beach environments, and there is concern that these aggregates might represent a long-term source of toxic compounds. However, because this OxHC fraction is a continuum of transformation products that are not well chemically characterized, it is not included in current oil spill fate and effect models. This challenges an accurate environmental risk assessment of weathered oil. Here, we used molecular and bulk analytical techniques to constrain the chemical composition and environmental fate of weathered oil samples collected on the sea surface and beaches of the Gulf of Mexico. We found that approximately 50% of the weathering-related disappearance of saturated and aromatic compounds in these samples was compensated by an increase in OxHC. Furthermore, we identified and quantified a suite of oxygenated aliphatic compounds that are more water-soluble and less hydrophobic than its presumed precursors, but only represent <1% of the oil residues' mass. Lastly, dissolution experiments showed that compounds in the OxHC fraction can leach into the water; however, the mass loss of this process is small. Overall, this study shows that the OxHC fraction is prevalent and persistent in weathered oil/sand aggregates, which can act as a long-term source of dissolved oil-derived compounds.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Golfo de México
9.
Mar Pollut Bull ; 126: 130-136, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29421079

RESUMEN

Heavily weathered petroleum residues from the Deepwater Horizon (DwH) disaster continue to be found on beaches along the Gulf of Mexico as oiled-sand patties. Here, we demonstrate the ongoing biodegradation of weathered Macondo Well (MW) oil residues by tracing oil-derived carbon into active microbial biomass using natural abundance radiocarbon (14C). Oiled-sand patties and non-oiled sand were collected from previously studied beaches in Mississippi, Alabama, and Florida. Phospholipid fatty acid (PLFA) analyses illustrated that microbial communities present in oiled-sand patties were distinct from non-oiled sand. Depleted 14C measurements of PLFA revealed that microbes on oiled-sand patties were assimilating MW oil residues five years post-spill. In contrast, microbes in non-oiled sand assimilated recently photosynthesized carbon. These results demonstrate ongoing biodegradation of weathered oil in sand patties and the utility of 14C PLFA analysis to track the biodegradation of MW oil residues long after other indicators of biodegradation are no longer detectable.


Asunto(s)
Contaminación por Petróleo/análisis , Petróleo/metabolismo , Fosfolípidos/análisis , Alabama , Playas , Biodegradación Ambiental , Biomasa , Carbono , Radioisótopos de Carbono/análisis , Desastres , Florida , Golfo de México , Consorcios Microbianos , Mississippi , Yacimiento de Petróleo y Gas , Dióxido de Silicio , Tiempo (Meteorología)
10.
Proc Natl Acad Sci U S A ; 114(1): E9-E18, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994146

RESUMEN

The 2010 Deepwater Horizon disaster introduced an unprecedented discharge of oil into the deep Gulf of Mexico. Considerable uncertainty has persisted regarding the oil's fate and effects in the deep ocean. In this work we assess the compound-specific rates of biodegradation for 125 aliphatic, aromatic, and biomarker petroleum hydrocarbons that settled to the deep ocean floor following release from the damaged Macondo Well. Based on a dataset comprising measurements of up to 168 distinct hydrocarbon analytes in 2,980 sediment samples collected within 4 y of the spill, we develop a Macondo oil "fingerprint" and conservatively identify a subset of 312 surficial samples consistent with contamination by Macondo oil. Three trends emerge from analysis of the biodegradation rates of 125 individual hydrocarbons in these samples. First, molecular structure served to modulate biodegradation in a predictable fashion, with the simplest structures subject to fastest loss, indicating that biodegradation in the deep ocean progresses similarly to other environments. Second, for many alkanes and polycyclic aromatic hydrocarbons biodegradation occurred in two distinct phases, consistent with rapid loss while oil particles remained suspended followed by slow loss after deposition to the seafloor. Third, the extent of biodegradation for any given sample was influenced by the hydrocarbon content, leading to substantially greater hydrocarbon persistence among the more highly contaminated samples. In addition, under some conditions we find strong evidence for extensive degradation of numerous petroleum biomarkers, notably including the native internal standard 17α(H),21ß(H)-hopane, commonly used to calculate the extent of oil weathering.


Asunto(s)
Biodegradación Ambiental , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Alcanos/análisis , Desastres , Golfo de México , Hidrocarburos/análisis , Yacimiento de Petróleo y Gas , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
11.
Environ Sci Technol ; 50(14): 7397-408, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27117673

RESUMEN

With the expansion of offshore petroleum extraction, validated models are needed to simulate the behaviors of petroleum compounds released in deep (>100 m) waters. We present a thermodynamic model of the densities, viscosities, and gas-liquid-water partitioning of petroleum mixtures with varying pressure, temperature, and composition based on the Peng-Robinson equation-of-state and the modified Henry's law (Krychevsky-Kasarnovsky equation). The model is applied to Macondo reservoir fluid released during the Deepwater Horizon disaster, represented with 279-280 pseudocomponents, including 131-132 individual compounds. We define >n-C8 pseudocomponents based on comprehensive two-dimensional gas chromatography (GC × GC) measurements, which enable the modeling of aqueous partitioning for n-C8 to n-C26 fractions not quantified individually. Thermodynamic model predictions are tested against available laboratory data on petroleum liquid densities, gas/liquid volume fractions, and liquid viscosities. We find that the emitted petroleum mixture was ∼29-44% gas and ∼56-71% liquid, after cooling to local conditions near the broken Macondo riser stub (∼153 atm and 4.3 °C). High pressure conditions dramatically favor the aqueous dissolution of C1-C4 hydrocarbons and also influence the buoyancies of bubbles and droplets. Additionally, the simulated densities of emitted petroleum fluids affect previous estimates of the volumetric flow rate of dead oil from the emission source.


Asunto(s)
Petróleo , Agua/química , Cromatografía de Gases , Hidrocarburos , Contaminación por Petróleo
12.
Environ Sci Technol ; 48(12): 6726-34, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24831878

RESUMEN

Petroleum biomarkers such as hopanoids, steranes, and triaromatic steroids (TAS) are commonly used to investigate the source and fate of petroleum hydrocarbons in the environment based on the premise that these compounds are resistant to biotic and abiotic degradation. To test the validity of this premise in the context of the Deepwater Horizon disaster, we investigated changes to these biomarkers as induced by natural weathering of crude oil discharged from the Macondo Well (MW). For surface slicks collected from May to June in 2010, and other oiled samples collected on beaches in the northern Gulf of Mexico from July 2010 until August 2012, hopanoids with up to 31 carbons as well as steranes and diasteranes were not systematically affected by weathering processes. In contrast, TAS and C32- to C35-homohopanes were depleted in all samples relative to 17α(H),21ß(H)-hopane (C30-hopane). Compared to MW oil, C35-homohopanes and TAS were depleted by 18 ± 10% and 36 ± 20%, respectively, in surface slicks collected from May to June 2010, and by 37 ± 9% and 67 ± 10%, respectively, in samples collected along beaches from April 2011 through August 2012. Based on patterns of relative losses of individual compounds, we hypothesize biodegradation and photooxidation as main degradation processes for homohopanes and TAS, respectively. This study highlights that (i) TAS and homohopanes can be degraded within several years following an oil spill, (ii) the use of homohopanes and TAS for oil spill forensics must account for degradation, and (iii) these compounds provide a window to parse biodegradation and photooxidation during advanced stages of oil weathering.


Asunto(s)
Conceptos Meteorológicos , Contaminación por Petróleo/análisis , Petróleo/análisis , Biodegradación Ambiental , Cromatografía de Gases , Golfo de México , Hidrocarburos/análisis , Hidrocarburos/química , Luz , Yacimiento de Petróleo y Gas/química , Oxidación-Reducción , Esteroides/análisis
13.
Environ Sci Technol ; 48(3): 1628-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24447243

RESUMEN

Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils.


Asunto(s)
Hidrocarburos/análisis , Contaminación por Petróleo/análisis , Petróleo/análisis , Biodegradación Ambiental , Cromatografía de Gases , Desastres , Monitoreo del Ambiente , Golfo de México , México
14.
Mar Pollut Bull ; 79(1-2): 268-77, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24355571

RESUMEN

Understanding weathering processes plays a critical role in oil spill forensics, which is based on the comparison of the distributions of selected compounds assumed to be recalcitrant and/or have consistent weathering transformations. Yet, these assumptions are based on limited laboratory and oil-spill studies. With access to additional sites that have been oiled by different types of oils and exposures, there is a great opportunity to expand on our knowledge about these transformations. Here, we demonstrate the effects of photooxidation on the overall composition of spilled oils caused by natural and simulated sunlight, and particularly on the often used polycyclic aromatic hydrocarbons (PAHs) and the biomarker triaromatic steranes (TAS). Both laboratory and field data from oil released from the Macondo well oil following the Deepwater Horizon disaster (2010), and heavy fuel-oil from the Prestige tanker spill (2002) have been obtained to improve the data interpretation of the typical fingerprinting methodology.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación por Petróleo/análisis , Petróleo/análisis , Procesos Fotoquímicos , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
15.
Mar Pollut Bull ; 75(1-2): 140-149, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23993388

RESUMEN

Following the release of crude oil from the Macondo well in 2010, a wide range of weathering processes acted on the spilled oil. A recent study revealed that samples from this spill were oxidized into oxygenated hydrocarbons (OxHC) comprising more than 50% of the extracted hydrocarbons. The precursors of these compounds were not identified despite using a wide range of analytical tools, including gas chromatography (GC). To search for these precursors, over 40 samples were analyzed by comprehensive two-dimensional gas chromatography (GC×GC), one of the largest studies of its kind to date. Partial least squares regression was employed to elucidate the GC×GC peaks that could be the precursors of OxHC in our samples. We found that the formation of OxHC correlated with the disappearance of saturated hydrocarbons, including alkylcyclopentanes, alkyl cyclohexanes, alkylated bicyclic saturated compounds, tricyclic terpanpoids, and alkylbenzenes. These results indicate a previously under-reported chemodynamic process in oil spill weathering.


Asunto(s)
Contaminación por Petróleo , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes Químicos del Agua/química , Cromatografía de Gases , Restauración y Remediación Ambiental/métodos , Oxidación-Reducción , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
16.
Environ Sci Technol ; 47(13): 7530-9, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23692145

RESUMEN

Traditional tools for routine environmental analysis and forensic chemistry of petroleum have relied almost exclusively on gas chromatography-mass spectrometry (GC-MS), although many compounds in crude oil (and its transformation products) are not chromatographically separated or amenable to GC-MS due to volatility. To enhance current and future studies on the fate, transport, and fingerprinting of the Macondo well oil released from the 2010 Deepwater Horizon disaster, we created an extensive molecular library of the unadulterated petroleum to compare to a tar ball collected on the beach of Louisiana. We apply ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to identify compositional changes at the molecular level between native and weathered crude oil samples and reveal enrichment in polar compounds inaccessible by GC-based characterization. The outlined approach provides unprecedented detail with the potential to enhance insight into the environmental fate of spilled oil, improved toxicology, molecular modeling of biotic/abiotic weathering, and comprehensive molecular characterization for petroleum-derived releases. Here, we characterize more than 30,000 acidic, basic, and nonpolar unique neutral elemental compositions for the Macondo well crude oil, to provide an archive for future chemical analyses of the environmental consequences of the oil spill.


Asunto(s)
Espectrometría de Masas/métodos , Contaminación por Petróleo/análisis , Petróleo/análisis , Cromatografía de Gases
17.
Environ Sci Technol ; 46(16): 8799-807, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22809266

RESUMEN

Following the Deepwater Horizon disaster, the effect of weathering on surface slicks, oil-soaked sands, and oil-covered rocks and boulders was studied for 18 months. With time, oxygen content increased in the hydrocarbon residues. Furthermore, a weathering-dependent increase of an operationally defined oxygenated fraction relative to the saturated and aromatic fractions was observed. This oxygenated fraction made up >50% of the mass of weathered samples, had an average carbon oxidation state of -1.0, and an average molecular formula of (C(5)H(7)O)(n). These oxygenated hydrocarbon residues were devoid of natural radiocarbon, confirming a fossil source and excluding contributions from recent photosynthate. The incorporation of oxygen into the oil's hydrocarbons, which we refer to as oxyhydrocarbons, was confirmed from the detection of hydroxyl and carbonyl functional groups and the identification of long chain (C(10)-C(32)) carboxylic acids as well as alcohols. On the basis of the diagnostic ratios of alkanes and polycyclic aromatic hydrocarbons, and the context within which these samples were collected, we hypothesize that biodegradation and photooxidation share responsibility for the accumulation of oxygen in the oil residues. These results reveal that molecular-level transformations of petroleum hydrocarbons lead to increasing amounts of, apparently recalcitrant, oxyhydrocarbons that dominate the solvent-extractable material from oiled samples.


Asunto(s)
Oxígeno/química , Contaminación por Petróleo , Petróleo , Cromatografía de Gases , Espectroscopía Infrarroja por Transformada de Fourier
18.
J Chromatogr A ; 1218(32): 5549-53, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21737090

RESUMEN

18α(H)-, 18ß(H)-oleanane and lupane are angiosperm-derived biomarkers that are used as age indicators for the Late Cretaceous onwards when the first proliferation of angiosperms occurred. In addition, the 18α(H)-/18ß(H)-oleanane ratio is employed as a thermal maturity parameter of crude oil. However, evidence has shown that accurate quantification of these compounds has been impeded by inadequate chromatographic separation by traditional one-dimensional gas chromatography. In this study, we present the separation of 18α(H)-, 18ß(H)-oleanane and lupane with comprehensive two-dimensional gas chromatography (GC×GC). Furthermore, it was observed that 18ß(H)-oleanane elutes earlier than 18α(H)-oleanane in second dimension (polarity) which we attribute to steric hindrance effects. Two GC conditions have been developed in order to achieve baseline separation of the triterpenoids of interest in complex mixtures such as sediment extracts and crude oils.


Asunto(s)
Cromatografía de Gases/métodos , Magnoliopsida/química , Ácido Oleanólico/análogos & derivados , Triterpenos/química , Isomerismo , Estructura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Petróleo/análisis
19.
J Chromatogr A ; 1218(18): 2584-92, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21450298

RESUMEN

The accurate establishment of oil similarity is a longstanding problem in petroleum geochemistry and a necessary component for resolving the architecture of an oil reservoir. Past limitations have included the excessive reliance on a relatively small number of biomarkers to characterize such complex fluids as crude oils. Here we use multiway principal components analysis (MPCA) on large numbers of specific chemical components resolved with comprehensive two-dimensional gas chromatography-flame ionization detection (GC×GC-FID) to determine the molecular relatedness of eight different maltene fractions of crude oils. MPCA works such that every compound eluting within the same first and second dimension retention time is quantitatively compared with what elutes at that same retention times within the other maltene fractions. Each maltene fraction and corresponding MPCA analysis contains upwards of 3500 quantified components. Reservoir analysis included crude oil sample pairs from around the world that were collected sequentially at depth within a single well, collected from multiple depths in the same well, and from different depths and different wells but thought to be intersected by the same permeable strata. Furthermore, three different regions of each GC×GC-FID chromatograms were analysed to evaluate the effectiveness of MPCA to resolve compositional changes related to the source of the oil generating sediments and its exposure to biological and/or physical weathering processes. Compositional and instrumental artefacts introduced during sampling and processing were also quantitatively evaluated. We demonstrate that MPCA can resolve multi-molecular differences between oil samples as well as provide insight into the overall molecular relatedness between various crude oils.


Asunto(s)
Cromatografía de Gases/métodos , Petróleo/análisis , Análisis de Componente Principal/métodos , Biomarcadores/análisis , Industria Procesadora y de Extracción , Hidrocarburos/análisis , Hidrocarburos/química , Análisis Multivariante
20.
Science ; 330(6001): 201-4, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20724584

RESUMEN

The Deepwater Horizon blowout is the largest offshore oil spill in history. We present results from a subsurface hydrocarbon survey using an autonomous underwater vehicle and a ship-cabled sampler. Our findings indicate the presence of a continuous plume of oil, more than 35 kilometers in length, at approximately 1100 meters depth that persisted for months without substantial biodegradation. Samples collected from within the plume reveal monoaromatic petroleum hydrocarbon concentrations in excess of 50 micrograms per liter. These data indicate that monoaromatic input to this plume was at least 5500 kilograms per day, which is more than double the total source rate of all natural seeps of the monoaromatic petroleum hydrocarbons in the northern Gulf of Mexico. Dissolved oxygen concentrations suggest that microbial respiration rates within the plume were not appreciably more than 1 micromolar oxygen per day.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Contaminación Ambiental , Hidrocarburos , Petróleo , Agua de Mar , Contaminantes del Agua , Océano Atlántico , Hidrocarburos/metabolismo , Petróleo/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Contaminantes del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA