Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 11(15)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954235

RESUMEN

Aging is a process characterised by a general decline in physiological functions. The high bioavailability of reactive oxygen species (ROS) plays an important role in the aging rate. Due to the close relationship between aging and oxidative stress (OS), functional foods rich in flavonoids are excellent candidates to counteract age-related changes. This study aimed to verify the protective role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. Markers of OS, including ROS production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, as well as the anion exchange capability through Band 3 protein (B3p) and glycated haemoglobin (A1c) have been analysed in erythrocytes treated with d-Gal for 24 h, with or without pre-incubation for 1 h with 0.5-10 µg/mL Açaì extract. Our results show that the extract avoided the formation of acanthocytes and leptocytes observed after exposure to 50 and 100 mM d-Gal, respectively, prevented d-Gal-induced OS damage, and restored alterations in the distribution of B3p and CD47 proteins. Interestingly, d-Gal exposure was associated with an acceleration of the rate constant of SO42- uptake through B3p, as well as A1c formation. Both alterations have been attenuated by pre-treatment with the Açaì extract. These findings contribute to clarify the aging mechanisms in human erythrocytes and propose functional foods rich in flavonoids as natural antioxidants for the treatment and prevention of OS-related disease conditions.


Asunto(s)
Euterpe , Eritrocitos/metabolismo , Euterpe/metabolismo , Flavonoides/farmacología , Hemoglobina Glucada/metabolismo , Humanos , Estrés Oxidativo , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Cell Physiol Biochem ; 52(6): 1292-1308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31026392

RESUMEN

BACKGROUND/AIMS: Magnesium, whose supplementation provides beneficial effects against oxidative stress-related conditions, has been here used to possibly protect Band 3 protein anion exchange capability and underlying signaling in an in vitro model of oxidative stress. METHODS: Whole blood samples pre-exposed to 10 mM MgCl2, were treated for 30 min with H2O2 (300 µM, 600 µM and 1 mM) chosen as oxidant molecule. In a separate protocol, NEM (0.5,1 and 2 mM), a phosphatase inhibitor and thiol-alkilant agent, has been also applied. The rate constant for SO4= uptake, accounting for Band 3 protein anion exchange capability, has been measured by a turbidimetric method, while intracellular reduced glutathione (GSH) levels and membrane -SH groups mostly belonging to Band 3 protein were spectrophotometrically quantified after reaction with DTNB (5,5'-dithiobis-(2-nitrobenzoic acid). Expression levels of Band 3 protein, phosporylated Tyrosine (P-Tyr) and tyrosine kinase (Syk) involved in signaling have been also measured. RESULTS: Our results show that Mg2+ prevented the reduction in the rate constant for SO4= uptake on H2O2-treated erythrocytes, not involving GSH levels and membrane -SH groups, unlike NEM, remaining both P-Tyr and Syk expression levels high. CONCLUSION: Hence, i) the measurement of the rate constant for SO4= uptake is a useful tool to evaluate Mg2+ protective effect; ii) the use of two different oxidant molecules shed light on Mg2+ effect which seems not to modulate phosphorylative pathways but would putatively stabilize membrane organization; iii) the use of Mg2+ in food supplementation can be reasonably supported to protect erythrocytes homeostasis in case of oxidative stress-related diseases.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Antioxidantes/farmacología , Eritrocitos/efectos de los fármacos , Magnesio/farmacología , Estrés Oxidativo/efectos de los fármacos , Sulfatos/metabolismo , Transporte Biológico/efectos de los fármacos , Eritrocitos/metabolismo , Glutatión/metabolismo , Humanos
3.
Toxins (Basel) ; 10(4)2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570625

RESUMEN

Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances-including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins-and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings. However, rinsing the sting site with vinegar (5% acetic acid) and the application of heat (hot pack/immersion in hot water) or lidocaine appear to be substantiated by evidence. Controlled clinical trials or reliable models of envenomation are warranted to confirm the efficacy and safety of these approaches and identify possible species-specific exceptions. Knowledge of the precise composition of Scyphozoa venom may open the way to molecule-oriented therapies in the future.


Asunto(s)
Mordeduras y Picaduras/terapia , Venenos de Cnidarios/toxicidad , Escifozoos , Animales , Venenos de Cnidarios/química , Primeros Auxilios , Humanos
4.
Sci Rep ; 7: 41065, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112211

RESUMEN

Cnidarians may negatively impact human activities and public health but concomitantly their venom represents a rich source of bioactive substances. Pelagia noctiluca is the most venomous and abundant jellyfish of the Mediterranean Sea and possesses a venom with hemolytic and cytolytic activity for which the mechanism is largely unknown. Here we show that exposure of mammalian cells to crude venom from the nematocysts of P. noctiluca profoundly alters the ion conductance of the plasma membrane, therefore affecting homeostatic functions such as the regulation and maintenance of cellular volume. Venom-treated cells exhibited a large, inwardly rectifying current mainly due to permeation of Na+ and Cl-, sensitive to amiloride and completely abrogated following harsh thermal treatment of crude venom extract. Curiously, the plasma membrane conductance of Ca2+ and K+ was not affected. Current-inducing activity was also observed following delivery of venom to the cytosolic side of the plasma membrane, consistent with a pore-forming mechanism. Venom-induced NaCl influx followed by water and consequent cell swelling most likely underlie the hemolytic and cytolytic activity of P. noctiluca venom. The present study underscores unique properties of P. noctiluca venom and provides essential information for a possible use of its active compounds and treatment of envenomation.


Asunto(s)
Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Venenos de Cnidarios/farmacología , Escifozoos/química , Animales , Calcio/química , Membrana Celular/química , Cloruros/química , Venenos de Cnidarios/química , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Nematocisto/química , Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA