Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240134

RESUMEN

The continuous emergence of bacterial resistance alters the activities of different antibiotic families and requires appropriate strategies to solve therapeutic impasses. Medicinal plants are an attractive source for researching alternative and original therapeutic molecules. In this study, the fractionation of natural extracts from A. senegal and the determination of antibacterial activities are associated with molecular networking and tandem mass spectrometry (MS/MS) data used to characterize active molecule(s). The activities of the combinations, which included various fractions plus an antibiotic, were investigated using the "chessboard" test. Bio-guided fractionation allowed the authors to obtain individually active or synergistic fractions with chloramphenicol activity. An LC-MS/MS analysis of the fraction of interest and molecular array reorganization showed that most identified compounds are Budmunchiamines (macrocyclic alkaloids). This study describes an interesting source of bioactive secondary metabolites structurally related to Budmunchiamines that are able to rejuvenate a significant chloramphenicol activity in strains that produce an AcrB efflux pump. They will pave the way for researching new active molecules for restoring the activity of antibiotics that are substrates of efflux pumps in enterobacterial-resistant strains.


Asunto(s)
Acacia , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Espectrometría de Masas en Tándem , Cromatografía Liquida , Senegal , Antibacterianos/química , Cloranfenicol/farmacología , Cloranfenicol/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
Anticancer Agents Med Chem ; 23(6): 687-698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36028959

RESUMEN

BACKGROUND: Conventional chemotherapeutic treatment of colorectal cancer has low efficiency because of its high toxicity. Several studies identified natural compounds as potential antitumor agents by inducing cancer cell cycle arrest or apoptosis and exhibiting a potential synergy in drug combination therapy. Natural compounds derived from plants represent an important source of pharmacologic agents toward several diseases. For example, the Tunisian Thymelaeaceae plants are used in folk medicine for the treatment of different pathologies such as diabetes and hypertension. OBJECTIVE: The Thymelaea hirsuta L. extracts were evaluated for their anti-tumoral activities and their adjuvant potential that could be used in conventional colorectal cancer therapy. METHODS: Fractionation of total methanolic extract from the plant leaves provided 4 fractions using vacuum liquid chromatography. The cytotoxic activities of these fractions were tested toward colorectal cancer cells. RESULTS: Ethyl acetate fraction (E2 fraction) induced cell cycle arrest and apoptosis by activating caspase-3. E2 fraction inhibited cell invasion by reducing integrin α5 expression and FAK phosphorylation. Moreover, E2 fraction potentialized colorectal cancer cells to 5-FU treatment. CONCLUSION: The selected plant Thymelaea hirsuta is the source of natural compounds that inhibited cell growth and invasion and induced cell cycle arrest in colorectal cancer cells. The most interesting result was their potential synergy in 5-FU combination treatment. Further analysis will identify the active compounds and confirm their role in chemotherapeutic treatment by sensitizing colorectal cancer cell to anti-cancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Thymelaeaceae , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Fluorouracilo/farmacología , Thymelaeaceae/química , Apoptosis , Línea Celular Tumoral
3.
Molecules ; 26(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530604

RESUMEN

The role and importance of the identification of natural products are discussed in the perspective of the study of secondary metabolites. The rapid identification of already reported compounds, or structural dereplication, is recognized as a key element in natural product chemistry. The biological taxonomy of metabolite producing organisms, the knowledge of metabolite molecular structures, and the availability of metabolite spectroscopic signatures are considered as the three pillars of structural dereplication. The role and the construction of databases is illustrated by references to the KNApSAcK, UNPD, CSEARCH, and COCONUT databases, and by the importance of calculated taxonomic and spectroscopic data as substitutes for missing or lost original ones. Two NMR-based tools, the PNMRNP database that derives from UNPD, and KnapsackSearch, a database generator that provides taxonomically focused libraries of compounds, are proposed to the community of natural product chemists. The study of the alkaloids from Urceolina peruviana, a plant from the Andes used in traditional medicine for antibacterial and anticancer actions, has given the opportunity to test different approaches to dereplication, favoring the use of publicly available data sources.


Asunto(s)
Alcaloides/química , Amaryllidaceae/química , Productos Biológicos/química , Química Computacional , Bases de Datos Farmacéuticas , Estructura Molecular , Raíces de Plantas/química , Metabolismo Secundario
4.
Molecules ; 24(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242603

RESUMEN

Macrocyclic diterpenoids produced by plants of the Euphorbiaceae family are of considerable interest due to their high structural diversity; and their therapeutically relevant biological properties. Over the last decade many studies have reported the ability of macrocyclic diterpenoids to inhibit in cellulo the cytopathic effect induced by the chikungunya virus. This review; which covers the years 2011 to 2019; lists all macrocyclic diterpenoids that have been evaluated for their ability to inhibit viral replication. The structure-activity relationships and the probable involvement of protein kinase C in their mechanism of action are also detailed.


Asunto(s)
Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/fisiología , Diterpenos/química , Diterpenos/farmacología , Euphorbiaceae/química , Extractos Vegetales/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Humanos , Estructura Molecular , Extractos Vegetales/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA