Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155324, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552437

RESUMEN

BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Estrés Psicológico , Animales , Medicamentos Herbarios Chinos/farmacología , Estrés Psicológico/tratamiento farmacológico , Masculino , Ratas , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Enfermedades Gastrointestinales/tratamiento farmacológico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Motilidad Gastrointestinal/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Citrus/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo
2.
Eur J Pharmacol ; 959: 176081, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797674

RESUMEN

Cardiac microvascular dysfunction contributes to cardiac hypertrophy (CH) and can progress to heart failure. Lutein is a carotenoid with various pharmacological properties, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. Limited research has been conducted on the effects of lutein on pressure overload-induced CH. Studies have shown that CH is accompanied by ferroptosis in the cardiac microvascular endothelial cells (CMECs). This study aimed to investigate the effect of lutein on ferroptosis of CMECs in CH. The transcription factor interferon regulatory factor (IRF) is associated with immune system function, tumor suppression, and apoptosis. The results of this study suggested that pressure overload primarily inhibits IRF expression, resulting in endothelial ferroptosis. Administration of lutein increased the expression of IRF, providing protection to endothelial cells during pressure overload. IRF silencing downregulated solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, leading to the induction of ferroptosis in CMECs. Lutein supplementation suppressed endothelial ferroptosis by upregulating IRF. These data suggest that IRF may function as a transcription factor for SLC7A11 and that lutein represses ferroptosis in CMECs by upregulating IRF expression. Therefore, targeting IRF may be a promising therapeutic strategy for effective cardioprotection in patients with CH and heart failure.


Asunto(s)
Ferroptosis , Insuficiencia Cardíaca , Humanos , Células Endoteliales , Luteína/farmacología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/farmacología , Células Cultivadas , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/patología
3.
Chin J Integr Med ; 29(12): 1087-1098, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606869

RESUMEN

OBJECTIVE: To explore the potential molecular mechanism of tetrahydropalmatine (THP) on acute myocardial ischemia (AMI). METHODS: First, the target genes of THP and AMI were collected from SymMap Database, Traditional Chinese Medicine Database and Analysis Platform, and Swiss Target Prediction, respectively. Then, the overlapping target genes between THP and AMI were evaluated for Grene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction network analysis. The binding affinity between the protein and THP was assessed by molecular docking. Finally, the protective effects of THP on AMI model and oxygen and glucose deprivation (OGD) model of H9C2 cardiomyocyte were explored and the expression levels of target genes were detected by RT-qPCR in vivo and in vitro. RESULTS: MMP9, PPARG, PTGS2, SLC6A4, ESR1, JAK2, GSK3B, NOS2 and AR were recognized as hub genes. The KEGG enrichment analysis results revealed that the potential target genes of THP were involved in the regulation of PPAR and hormone pathways. THP improved the cardiac function, as well as alleviated myocardial cell damage. Furthermore, THP significantly decreased the RNA expression levels of MMP9, PTGS2, SLC6A4, GSK3B and ESR1 (P<0.05, P<0.01) after AMI. In vitro, THP significantly increased H9C2 cardiomyocyte viability (P<0.05, P<0.01) and inhibited the RNA expression levels of PPARG, ESR1 and AR (P<0.05, P<0.01) in OGD model. CONCLUSIONS: THP could improve cardiac function and alleviate myocardial injury in AMI. The underlying mechanism may be inhibition of inflammation, the improvement of energy metabolism and the regulation of hormones.


Asunto(s)
Medicamentos Herbarios Chinos , Isquemia Miocárdica , Humanos , Metaloproteinasa 9 de la Matriz , Farmacología en Red , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , PPAR gamma , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/genética , Glucosa , ARN , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas de Transporte de Serotonina en la Membrana Plasmática
5.
Chin J Integr Med ; 29(6): 490-499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35881212

RESUMEN

OBJECTIVE: To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms. METHODS: Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD). RESULTS: MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD. CONCLUSIONS: MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ghrelina , Ratas , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ghrelina/farmacología , Ghrelina/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Hipocampo , Estrés Psicológico , Mamíferos/metabolismo
6.
J Nutr Biochem ; 104: 108972, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35227883

RESUMEN

The molecular characteristics of ferroptosis in cardiac hypertrophy have been rarely studied. Especially, there have been no studies to investigate the regulatory mechanisms of docosahexaenoic acid (DHA) on ferroptosis in cardiac hypertrophy. This study was designed to determine the role of ferroptosis in microvascular injury, and investigate the contribution of DHA in suppressing ferroptosis and preventing pressure overload-mediated endothelial damage. Our results indicated that the expression of interferon regulating factor 3 (IRF3) was primarily inhibited by pressure overload and consequently caused endothelial ferroptosis. Nevertheless, administration of DHA increased IRF3 expression and provided a pro-survival advantage for the endothelial system in the context of pressure overload. Experimental studies clearly showed that inhibition of IRF3 down-regulated SLC7A11 expression, and the latter leaded to the increase in the activities of arachidonate 12-lipoxygenase, which obligated cardiac microvascular endothelial cells to undergo ferroptosis via augmenting lipid peroxides. Interestingly, DHA supplementation suppressed endothelial ferroptosis via up-regulation of IRF3. Taken together, our studies identified the IRF3-SLC7A11-arachidonate 12-lipoxygenase axis as a new pathway responsible for pressure overload-mediated microvascular damage via initiating endothelial ferroptosis. In contrast, DHA treatment up-regulated the expression of IRF3 and thus reduced cellular ferroptosis, conferring a protective advantage to the endothelial system in pressure overload. These findings revealed that targeting IRF3 might be a useful therapeutic strategy for cardioprotection in cardiac hypertrophy and heart failure.


Asunto(s)
Ferroptosis , Animales , Araquidonato 12-Lipooxigenasa , Cardiomegalia/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Células Endoteliales , Interferones , Ratas , Regulación hacia Arriba
7.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5665-5673, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951220

RESUMEN

The aim of this study was to investigate the mechanism of luteolin regulating lipoxygenase pathway against oxygen-glucose deprivation/reperfusion(OGD/R) injury in H9 c2 cardiomyocytes. First, Discovery Studio 2019 was used for the molecular docking of luteolin with three key enzymes including lipoxygenase 5(ALOX5), lipoxygenase 12(ALOX12), and lipoxygenase 15(ALOX15) in lipoxygenase pathway. The docking results showed that luteolin had high docking score and similar functional groups with the original ligand. From this, H9 c2 cardiomyocytes were cultured in vitro, and then the injury model of H9 c2 cardiomyocytes was induced by deprivation of oxygen-glucose for 8 h, and rehabilitation of oxygen-glucose for 12 h. Cell viability was detected by tetrazolium(MTT) colorimetry. H9 c2 cardiomyocytes were observed with a fluorescence inverted microscope, and colorimetry was used to detect the level of lactate dehydrogenase(LDH) in cell supernatant. The results showed that luteolin could significantly protect the morphology of H9 c2 cells, significantly improve the survival rate of H9 c2 cardiomyocytes in OGD/R injury model, reduce the level of LDH in cell supernatant, inhibit cytotoxicity, and maintain the integrity of cell membrane. The inflammatory cytokines interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were detected by enzyme-linked immunosorbent assay. Compared with the model group, luteolin can significantly reduce the release of IL-6 and TNF-α. Western blot was employed to detect the protein levels of ALOX5, ALOX12, and ALOX15 in lipoxygenase pathway. After luteolin intervention, the protein levels of ALOX5, ALOX12, and ALOX15 were significantly down-regulated compared with those in model group. These results indicate that luteolin can inhibit the release of IL-6 and TNF-α by restraining the activation of lipoxygenase pathway, thereby playing a protective role in the cardiomyocyte injury model induced by OGD/R.


Asunto(s)
Miocitos Cardíacos , Daño por Reperfusión , Apoptosis , Glucosa , Humanos , Lipooxigenasas , Luteolina/farmacología , Simulación del Acoplamiento Molecular , Oxígeno , Transducción de Señal
8.
Animals (Basel) ; 11(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34827875

RESUMEN

This study aimed to investigate the effect of increasing the standardized ileal digestible (SID) total sulfur amino acid to lysine (TSAA:Lys) on the growth performance of nursery pigs raised with or without antibiotics (AGP) and to determine the optimal SID TSAA:Lys in nursery pigs raised without AGP. In Exp. 1, 924 nursery pigs (7.9 ± 1.3 kg), blocked by initial BW and sex, were randomly allotted to one of six treatments, with seven pens per treatment and twenty-two pigs per pen. The treatments were arranged in a 2 × 3 factorial design, with two AGP levels (0 or 50 mg/kg Carbodox) and three levels of SID TSAA:Lys (51.0, 58.5 or 66.0%). In Exp. 2, 990 weaned piglets (5.1 ± 0.9 kg), blocked by initial BW and sex, were randomly allotted to one of five dietary treatments (SID TSAA:Lys at 51, 58, 65, 72 or 79%) in the absence of AGP, with nine pens per treatment and twenty-two pigs per pen. Competing heteroskedastic models including broken-line linear (BLL), broken-line quadratic (BLQ), and quadratic polynomial (QP) were fitted for the growth performance data to estimate the optimal TSAA:Lys. In Exp. 1, AGP supplementation increased (p < 0.05) ADG and ADFI during the 21 d period. Increasing SID TSAA:Lys in the diets with AGP did not affect growth performance; however, increasing SID TSAA:Lys in the diets without AGP resulted in a linear increase (p < 0.05) in ADG and G:F. In Exp. 2, the best-fitting models for ADG and G:F from d 0 to 21 post-weaning were BLL, which yielded the optimal SID TSAA:Lys of 62% and 72%, respectively. The best-fitting models for ADG and G:F from d 21 to 42 post-weaning were BLL, which yielded the optimal SID TSAA:Lys of 59% and 58%, respectively. In conclusion, SID TSAA to Lys requirements under an antibiotic-free feeding regime during the first 21 d post-weaning were 62% and 72% in terms of ADG and G:F, respectively, whereas an SID TSAA:Lys of approximately 58% was required to maximize ADG and G:F for the late nursery phase.

9.
Biol Trace Elem Res ; 199(12): 4582-4592, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33432510

RESUMEN

The present study investigated the interactive effects of copper sources and a high level of phytase on growth performance, nutrient digestibility, tissue mineral concentrations, and plasma parameters in nursery pigs. Weaning piglets (N = 192; 6.06 ± 0.99 kg), blocked by body weight, were randomly allotted to 1 of 4 dietary treatments, with 12 pens per treatment and 4 pigs per pen. A basal diet for each phase was formulated to meet nutrient requirements for nursery pigs with the exception that standardized total tract digestibility (STTD) P was reduced by 0.12% and Ca was adjusted to achieve Ca/STTD P = 2.15. The 4 dietary treatments were arranged in a 2 × 2 factorial design, with 2 Cu sources (125 mg/kg Cu from copper methionine hydroxy analogue chelate (Cu-MHAC) or copper sulfate (CuSO4)) and 2 phytase levels (0 or 1500 phytase units (FTU)/kg). Results showed that there was an interaction (P < 0.05) between Cu sources and phytase on ADG during days 0-41. When phytase was not present in the diets (P deficient), there was no difference between the two Cu sources in terms of ADG during days 0-41, whereas with phytase in the diets, Cu-MHAC tended to improve (P < 0.10) ADG during days 0-41 compared with CuSO4. Pigs fed Cu-MHAC had greater apparent total tract digestibility (ATTD) of neutral and acid detergent fiber and STTD of P than those fed CuSO4. Phytase increased (P < 0.05) growth performance, ATTD of Ca and P, and plasma inositol and growth hormone concentrations. In conclusion, Cu-MHAC may be more effective in improving growth rate than CuSO4 when phytase was supplemented at 1500 FTU/kg. Cu-MHAC enhanced fiber and P digestibility regardless of phytase, compared with CuSO4. Phytase addition in P-deficient diets was effective in improving growth performance, Ca and P digestibility, and plasma inositol and growth hormone concentrations.


Asunto(s)
6-Fitasa , Fósforo Dietético , Alimentación Animal/análisis , Animales , Cobre , Dieta , Suplementos Dietéticos , Digestión , Heces , Tracto Gastrointestinal , Minerales , Nutrientes , Fósforo , Porcinos
10.
Behav Brain Res ; 398: 112898, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905810

RESUMEN

The burden of depression is enormous, and numerous studies have found that major depressive disorder (MDD) induces cardiovascular disorders (CVD) and functional dyspepsia (FD). Excitingly, meranzin hydrate (MH), an absorbed bioactive compound of Aurantii Fructus Immaturus, reverses psychosocial stress-induced mood disorders, gastrointestinal dysfunction and cardiac disease. Pharmacological methods have repeatedly failed in antidepressant development over the past few decades, but repairing aberrant neural circuits might be a reasonable strategy. This article aimed to explore antidepressant-like effects and potential mechanisms of MH in a rat model of unpredictable chronic mild stress (UCMS). Utilizing blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we sought to find reliable neurocircuits or a dominant brain region revealing the multiple effects of MH. The results show that compared with UCMS rats, MH (10 mg/kg/day for 1 week i.g.)-treated rats exhibited decreased depression-like behaviour; increased expression of brain-derived neurotrophic factor (BDNF) in the hippocampal dentate gyrus; and normalized levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), and acylated ghrelin (AG). Additionally, the UCMS-induced rise in BOLD activation in the reward system was attenuated after MH treatment. A literature search shown that nucleus accumbens (NAc) and hypothalamus of the reward system might reveal multiple effects of MH on MDD-FD-CVD comorbidity. Further research will focus on the role of these two brain regions in treating depression associated with comorbidities.


Asunto(s)
Antidepresivos/farmacología , Cumarinas/farmacología , Giro Dentado/efectos de los fármacos , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Recompensa , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/administración & dosificación , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Cumarinas/administración & dosificación , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Ratas , Ratas Wistar
11.
Front Nutr ; 8: 811870, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155528

RESUMEN

BACKGROUND: Medicinal dendrobiums are used popularly in traditional Chinese medicine for the treatment of diabetes, while their active compounds and mechanism remain unclear. This review aimed to evaluate the mechanism and active compounds of medicinal dendrobiums in diabetes management through a systematic approach. METHODS: A systematic approach was conducted to search for the mechanism and active phytochemicals in Dendrobium responsible for anti-diabetic actions using databases PubMed, Embase, and SciFinder. RESULTS: Current literature indicates polysaccharides, bibenzyls, phenanthrene, and alkaloids are commonly isolated in Dendrobium genusin which polysaccharides and bibenzyls are most aboundant. Many animal studies have shown that polysaccharides from the species of Dendrobium provide with antidiabetic effects by lowering glucose level and reversing chronic inflammation of T2DM taken orally at 200 mg/kg. Dendrobium polysaccharides protect pancreatic ß-cell dysfunction and insulin resistance in liver. Dendrobium polysaccharides up-regulate the abundance of short-chain fatty acid to stimulate GLP-1 secretion through gut microbiota. Bibenzyls also have great potency to inhibit the progression of the chronic inflammation in cellular studies. CONCLUSION: Polysaccharides and bibenzyls are the major active compounds in medicinal dendrobiums for diabetic management through the mechanisms of lowering glucose level and reversing chronic inflammation of T2DM by modulating pancreatic ß-cell dysfunction and insulin resistance in liver as a result from gut microbita regulation.

12.
Phytother Res ; 35(1): 404-414, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33044778

RESUMEN

Several studies reported the relative antidepressant effects of Fructus Aurantii (FRA) with repeated treatment, the rapid antidepressant effects of FRA and the underlying mechanisms remained unclear. We, therefore, examined the rapid antidepressant actions of FRA in behavioral tests in mice and tested the underlying molecular mechanisms. We found FRA, like ketamine, reversed the behavioral deficits both in lipopolysaccharide(LPS)-induced and learned helplessness (LH) models at 1 day after a single administration. FRA was also capable of increasing the expressions of protein kinase A/cAMP-response element-binding protein/brain-derived neurotrophic factor (PKA/CREB/BDNF) signaling in hippocampus. Consistent with ketamine, FRA up-regulated the expressions of GABAergic receptor (GAD67) and glutamatergic receptor 1 (GluR1) in mouse hippocampus both exposed to LPS and LH. Moreover, synaptic proteins such as postsynaptic density-95 (PSD95) and synapsin1 were also up-regulated by a single dose of FRA both in LH and LPS models, like ketamine. Finally, metadoxine (an antagonist of CREB) inhibited the antidepressant effects of FRA in tail suspension test (TST) and forced swimming test (FST) in LPS-induced mice, which also blocked the phosphorylation of CREB and the expressions of neurotransmitters and synaptic molecules. Therefore, FRA had rapid antidepressant effects, which depended on PKA/CREB/BDNF pathway, subsequently regulated the downstream synaptic transmission.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/tratamiento farmacológico , Transmisión Sináptica/efectos de los fármacos , Animales , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Citrus/química , Frutas/química , Suspensión Trasera , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Natación , Regulación hacia Arriba/efectos de los fármacos
13.
Transl Anim Sci ; 4(4): txaa201, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33354657

RESUMEN

Two studies were conducted to determine the effects of a novel Escherichia coli phytase expressed in Pseudomonas fluorescens on growth performance, bone mineralization, and nutrient digestibility in pigs fed corn-soybean meal diets. In experiment 1, 160 nursery pigs (9.79 ± 1.22 kg) were randomly allotted to one of four treatments with 10 pens per treatment and four pigs per pen. Phase I and phase II diets were provided from d 0 to d 14 and d 14 to d 28, respectively. Treatments included: positive control (PC) with all nutrients meeting requirements; negative control (NC) with standardized total tract digestible (STTD) P reduced by 0.15% and 0.14% compared with PC in phase I and phase II, respectively; and NC diets containing 250 or 500 units of phytase (FTU) per kilogram. Results demonstrated that pigs fed PC had greater (P < 0.01) ADG and G:F for the overall experimental period, and greater (P < 0.01) bone ash and P concentrations, compared with pigs fed NC or diets with phytase supplementation. Pigs fed diets containing phytase had greater (P < 0.01) ADG and G:F for the overall experimental period compared with pigs fed the NC diet without phytase, and bone ash and P weights were increased (P < 0.01) as well. In experiment 2, 63 growing barrows (56.25 ± 2.54 kg) were blocked by BW and randomly allotted to one of seven treatments with nine pens per treatment and one pig per pen. A basal corn-soybean meal diet was formulated to meet nutrient requirements for growing pigs with the exception that STTD P was reduced by 0.18% compared with the requirement, and Ca was included to achieve a Ca:STTD P ratio of 2.15. Six additional diets were formulated by adding 250, 500, 750, 1,000, 1,500, or 2,000 FTU/kg of phytase to the basal diet. Pigs were fed experimental diets for 12 d with 7 d of adaptation and 5 d of fecal sample collection. Results indicated that there was a linear (P < 0.01) increase in apparent total tract digestibility of ash and ether extract, and STTD of Ca and P also increased (linear, P < 0.05) in response to increasing doses of phytase. Increasing phytase levels in the diets resulted in increase (quadratic, P < 0.05) in apparent ileal digestibility of Arg, His, Ile, Lys, Trp, Asp, and Glu. In conclusion, the novel E. coli phytase was effective in increasing growth performance, bone mineralization, and Ca and P digestibility in pigs fed corn-soybean meal-based diets. Results also indicated that this phytase had the potential to enhance the digestibility of fat and certain AA.

14.
Phytomedicine ; 78: 153309, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32890914

RESUMEN

BACKGROUND: Combination drug therapy has become an effective strategy for inflammation control. The anti­inflammatory capacities of silibinin and thymol have each been investigated on its own, but little is known about the synergistic anti-inflammatory effects of these two compounds. PURPOSE: This study aims to investigate the synergistic anti-inflammatory effects of silibinin and thymol when administered in combination to lipopolysaccharide (LPS)-induced RAW264.7 cells. METHODS: RAW264.7 cells were pre-treated with silibinin and thymol individually or in combination for 2 h before LPS stimulation. Cell viability was detected by the MTT assay. Nitric oxide (NO) production was measured by Griess reagent. Reactive oxygen species (ROS) was evaluated by 2',7'-dichlorofluorescein-diacetate. ELISA was used to detect tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Western blot was performed to analyse the protein expression of LPS-induced RAW264.7 cells. RESULTS: We observed a synergistic anti-inflammatory effect of silibinin and thymol when administered in combination to LPS-induced RAW264.7 cells. Silibinin combined with thymol (40 µM and 120 µM respectively, with the molar ratio 1:3) had more potent effects on the inhibition of NO, TNF-α, and IL-6 than those exerted by individual administration of these compounds in LPS-induced RAW264.7 cells. The combination of silibinin and thymol (40 µM and 120 µM respectively, with the molar ratio 1:3) strongly inhibited ROS and cyclooxygenase-2 (COX-2). More importantly, the combination of silibinin and thymol (40 µM and 120 µM respectively, with the molar ratio 1:3) was also successful in inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activities. Our results suggest that the synergistic anti-inflammatory effects of silibinin with thymol were associated with the inhibition of NF-κB and MAPK signalling pathways. CONCLUSION: The combination of silibinin and thymol (40 µM and 120 µM, respectively, with the molar ratio 1:3) could inhibit inflammation by suppressing NF-κB and MAPK signalling pathways in LPS-induced RAW264.7 cells.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , FN-kappa B/metabolismo , Silibina/farmacología , Timol/farmacología , Animales , Ciclooxigenasa 2/metabolismo , Sinergismo Farmacológico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Anim Sci ; 98(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841352

RESUMEN

The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-ß1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-ß, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.


Asunto(s)
Inmunoglobulinas/sangre , Metionina/análogos & derivados , Minerales/metabolismo , Porcinos/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino , Lactancia , Metionina/farmacología , Desarrollo de Músculos/efectos de los fármacos , Paridad , Embarazo , Porcinos/genética , Porcinos/crecimiento & desarrollo , Oligoelementos/farmacología , Destete
16.
Artículo en Inglés | MEDLINE | ID: mdl-32733578

RESUMEN

Paeoniflorin, an organic compound extracted from the roots of the white peony (Paeonia lactiflora) plant, has previously been shown to exert antidepression and prokinetic effects. The traditional Chinese prescription Si-Ni-San, of which paeoniflorin is a constituent, is often used in treating depression and functional gastrointestinal disorders. The effectiveness of Si-Ni-San has been shown to be less effective in a paeoniflorin-deleted form. The present study further investigates whether paeoniflorin alone is as effective as herbal prescriptions in which the compound is a constituent, specifically any antidepressive and prokinetic effect on rats subjected to a forced swimming test (FST). The FST was used to establish the depression model. Sprague-Dawley rats were administrated with 10 mg/kg paeoniflorin by gastrogavage three times before the behavioral test and gastrointestinal motility tests, respectively. In antidepression studies, fluoxetine was used as the positive control. In order to determine the effect of paeoniflorin on the gastrointestinal movement, mosapride was used as the positive control. Plasma and hippocampus monoamine, hypothalamic-pituitary-adrenal axis, plasma brain-derived neurotrophic factor (BDNF), superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA), ghrelin, motilin, and hippocampus nitric oxide (NO) were assessed using an enzyme-linked immunosorbent assay (ELISA). Gastrointestinal (GI) motility was measured in vivo and in vitro. Rats subjected to FST showed decreased gastric emptying and intestinal transit in vivo, decreased plasma and hippocampus 5-hydroxytryptamine, norepinephrine, dopamine, ghrelin, motilin, and reduced plasma BDNF and SOD as well as increased plasma and hippocampus corticotropin-releasing hormone, adrenocorticotropic hormone, corticosterone, plasma MDA, and hippocampus NO. Paeoniflorin reversed these symptoms in a similar manner to fluoxetine and mosapride, respectively. In vitro, paeoniflorin can stimulate the jejunal contract of healthy rats dose-dependently. The results suggest that paeoniflorin can simultaneously exert antidepression and prokinetic effects via polypharmacology.

17.
Transl Anim Sci ; 4(2): txaa083, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32705073

RESUMEN

This study investigated the interactive effects of zinc (Zn) and copper (Cu) sources and phytase on growth performance, oxidative status, mineral digestibility, tissue mineral concentrations, and gut morphology in nursery pigs. A total of 288 weaning barrows [body weight (BW) = 5.71 ± 0.81 kg], blocked by initial BW, were randomly allotted to one of eight dietary treatments, with nine pens per treatment and four pigs per pen. The eight dietary treatments were arranged in 2 × 2 × 2 factorial design, with two Zn sources [2,000, 2,000, and 100 mg/kg Zn from zinc oxide (ZnO) during phase 1 (days 1-14) and phase 2 (days 15-28), and phase 3 (days 29-42), respectively; 100 mg/kg Zn from zinc methionine hydroxy analogue chelate (Zn-MHAC) from phases 1 to 3], two Cu sources [150, 80, and 80 mg/kg Cu from copper sulfate (CuSO4) or copper methionine hydroxy analogue chelate (Cu-MHAC) during phases 1-3, respectively], and two phytase inclusion levels (0 or 500 FTU/kg). Results showed that ZnO supplementation at 2,000 mg/kg Zn significantly increased average daily feed intake (ADFI; P = 0.01) and average daily gain (ADG; P = 0.03) during phase 1 compared to Zn-MHAC group; however, Zn-MHAC supplementation tended (P = 0.06) to improve gain to feed ratio (G:F) during phase 2 compared to ZnO group. There were no differences (P > 0.10) between ZnO and Zn-MHAC groups in terms of ADG, ADFI, and G:F during the entire nursery period. Compared with CuSO4, Cu-MHAC tended to increase ADG (P = 0.07) and G:F (P = 0.08) during the entire nursery period. Phytase supplementation significantly increased ADG (P < 0.01), ADFI (P < 0.01), and G:F (P < 0.01) during the entire nursery period compared with no phytase supplementation. There was a significant interaction (P < 0.01) between Zn source and phytase on standardized total tract digestibility (STTD) of phosphorus (P), whereas there was no interaction (P = 0.21) between Cu sources and phytase on STTD of P. However, there was a significant interaction between Cu sources and phytase on calcium (Ca; P = 0.02) and P (P = 0.03) concentrations in metacarpal bones and G:F in phase 2 (P = 0.09). Furthermore, pigs fed diets containing Zn-MHAC tended to have lower ileum villus width (P = 0.07), compared with those fed diets containing ZnO, and pigs fed diets containing Cu-MHAC tended to have lower plasma malondialdehyde concentration (P = 0.10) compared with those fed diets containing CuSO4. In conclusion, under the conditions of the current study, ZnO supplementation at 2,000 mg/kg Zn was only effective in the first 2 wk postweaning, whereas Zn-MHAC supplementation at 100 mg/kg Zn could achieve better feed efficiency during phase 2 compared to pharmacological levels of ZnO, therefore, leading to no difference of growth performance in the entire nursery period. Low levels of Zn-MHAC may improve phytase efficacy on degrading phytate P compared to pharmacological levels of ZnO. Cu-MHAC may be more effective to promote growth compared to CuSO4, which may be partially driven by reduced oxidative stress. Results also indicated that Cu-MHAC might exert a synergistic effect with phytase on improving feed efficiency and bone mineralization.

18.
Chem Biol Interact ; 315: 108851, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31614129

RESUMEN

BACKGROUND: Currently, few herbal pharmacokinetic (PK) parameters have been applied successfully for therapeutic monitoring because of the complexity of consistency when there are multiple chemicals and efficacies. PURPOSE: The present study aims to evaluate the herbal PK properties by investigating the PK parameters of the 8 absorbed bioactive compounds (ABCs), which can represent its parent herbal holistic efficacy, to achieve a PK therapeutic monitoring of herbs. METHOD: First, we tested the hypothesis that the antidepressant and prokinetic effects and related anti-inflammation and anti-oxidation activity (APIO) by Fructus aurantii-Magnolia Bark (FM) formula are related to 8 compounds according to the absorbable evidence and the determined contents. Subsequently, stable and representative APIO from 8ABCs allowed us to develop a sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of 8 compounds following the oral administration of FM decoction (20 g/kg) in rats. RESULT: 8 compounds either including Meranzin hydrate (MH) or MH alone almost identically (8 compounds: 91.62-108.82%)or nearly(MH: 65.38-88.41%) replicated the parent formula FM in terms of efficacy for inducing APIO. CONCLUSION: This unifying strategy shows how multi-herb formulas pharmacokinetic therapeutic monitoring can be achieved by the method we established.


Asunto(s)
Antiinflamatorios/farmacocinética , Antidepresivos/farmacocinética , Antioxidantes/farmacocinética , Medicamentos Herbarios Chinos/química , Magnolia/química , Corteza de la Planta/química , Animales , Cromatografía Líquida de Alta Presión/métodos , Cumarinas/farmacocinética , Medicamentos Herbarios Chinos/farmacocinética , Frutas/química , Cinética , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
19.
Biomed Pharmacother ; 115: 108893, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31022598

RESUMEN

The comorbidity of coronary heart disease (CHD) and depression in patients is extremely prevalent, with a rate from 20 to 50%, while depression-like behaviors exist in a larger percentage of patients. Therefore, the study of comorbidities is particularly urgent. Chaihu-Shugan-San (CSS), a classical traditional Chinese medicine formula, has been used to treat CHD with depression for hundreds of years. However, the mechanism of its action on comorbidities remains unclear. Here, we focused on the behavioral changes in ApoE-/- mice fed a high-fat diet (HFD) and elucidated the mechanism of CSS and its main absorbed component, meranzin hydrate (MH), as an anti-atherosclerosis and anti-depression agent. In the present study, mice were fed an HFD for 16 weeks and were intragastrically administered high and low doses of CSS and MH. Depressive-like behaviors were evaluated by the sucrose preference test, the open-field test, the light-dark test and the tail-suspension test, after which atherosclerotic plaques, plasma lipids, inflammatory cytokine levels and the expression of BDNF/TrkB were measured. We demonstrated that the atherosclerosis model group exhibited significant depressant behaviors. Moreover, CSS inhibited depressive-like behavioral changes, reduced atherosclerotic plaque areas, plasma total cholesterol, triglycerides, LDL-cholesterol levels and inflammatory cytokines including TNF-α, IL-1ß, and IL-6 in plasma and hippocampi, increased the protein and mRNA expression of BDNF and TrkB in the aorta and the hippocampus. Interestingly, MH, the main component in CSS that is absorbed in the plasma and hippocampus, exerted effects similar to those of CSS. In addition, MH increased the protein and mRNA expression of BDNF and TrkB in human umbilical vein endothelial cells (HUVECs) induced by LPS. Collectively, these results suggest that MH represents the CSS decoction, induces anti-atherosclerosis effects and improves depression-like behaviors in HFD-fed ApoE-/- mice. Moreover, the regulation of proinflammatory factors and BDNF-TrkB signaling are possibly involved in this process. Our findings indicate that MH is a potential phytochemical compound for the prevention of the comorbidity of atherosclerosis and depression.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cumarinas/farmacología , Glicoproteínas de Membrana/metabolismo , Extractos Vegetales/farmacología , Proteínas Tirosina Quinasas/metabolismo , Animales , Antiinflamatorios , Factor Neurotrófico Derivado del Encéfalo/genética , Cumarinas/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados para ApoE , Extractos Vegetales/administración & dosificación , Proteínas Tirosina Quinasas/genética , Transducción de Señal/efectos de los fármacos
20.
Xenobiotica ; 49(6): 708-717, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30286676

RESUMEN

1. The pharmacokinetics (PKs) analysis of compounds absorbed after the oral administration of Si-Ni-San (SNS) decoction to functional dyspepsia (FD) patients was designed to detect whether the effects were similar to prokinetics administered to healthy rats, without ethical limitation. 2. First, the absorbed compounds, liquiritigenin (L), naringenin (N) and hesperitin (H) in the plasma were identified by UPLC-MS/MS following the oral administration of SNS decoction to subjects with FD. Next, the natural ratio of LNH in the SNS decoction was determined by UPLC. Third, gastric emptying and intestinal transit after the oral administration of LNH, in combination or alone, was compared with those observed after SNS administration in healthy rats. Additionally, the clinical PKs of LNH was studied. 3. The prokinetic efficacy of LNH administered at their natural ratios (7.5:5:1) increased dose-dependently and was better than the observed efficacy when administered alone in rats. Analysis of the clinical PK parameters, calculated using a one-compartment model, showed that the Cmax parameters of LNH in 3, 4 and 4 h were 639.17, 410.00 and 181.67 µg/L, respectively. 4. The clinical herbal PK analysis of the absorbed LNH preclinical prokinetic compounds, in their natural ratio from SNS, highlights the impact of an herbal translational pharmacology study.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Dispepsia/tratamiento farmacológico , Flavanonas/farmacocinética , Hesperidina/farmacocinética , Administración Oral , Adulto , Cromatografía Liquida , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Flavanonas/sangre , Flavanonas/química , Motilidad Gastrointestinal/efectos de los fármacos , Hesperidina/sangre , Hesperidina/química , Humanos , Masculino , Persona de Mediana Edad , Sulfametoxazol/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA