Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 207: 111550, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254408

RESUMEN

Cadmium (Cd) is harmful to plant growth and can be easily transferred from soil to plants. Plant cell wall plays important role in preventing Cd from entering cells. Salicylic acid (SA) mediated defense response increases plant resistance to heavy metals. In this study, all tomato seedlings were pre-treated with 100 µM SA for 3 d, then seedlings were used to analyze the role of SA in regulating plant cell wall resistance to Cd stress. The results showed that exogenous SA significantly reduced Cd accumulation in tomato plants and changed Cd distribution. By analyzing the cell wall composition, it was found cellulose, hemicellulose, pectin, and lignin were induced by SA. Interestingly, the content of Cd in pectin decreased by SA pretreatment, however it was increased in cellulose. Gene expression analysis showed SA up-regulated the expression level of lignin and cellulose synthase genes, but down-regulated the expression of pectin methylesterase related genes. In addition, SA down-regulated the activity of pectin methylesterase. These results indicated that SA pretreatment up-regulated cell wall polysaccharide synthesis and related gene expression to thicken the cell wall and block Cd from passing through. Furthermore, SA decreased pectin methylesterase activity and content to reduce cell wall Cd accumulation and change the Cd partition ratio.


Asunto(s)
Cadmio/metabolismo , Sustancias Protectoras/farmacología , Ácido Salicílico/farmacología , Solanum lycopersicum/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Metilación , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Plantones/metabolismo
2.
Chemosphere ; 212: 687-693, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30173114

RESUMEN

The effects of wheat root exudates and the aging interactions between biochar and soil on atrazine desorption from biochar-amended soil were carefully examined. Compared with CaCl2 solution, wheat root exudates significantly increase the desorption of atrazine from biochar, mainly by promoting the desorption of atrazine adsorbed on biochar with specific forces. Wheat root exudates were effectively separated into three components with different electrical properties, namely, anionic, neutral, and cationic components. Mainly due to the carboxyl-containing compounds, the anionic component was the main active component in the wheat root exudates that enhances the desorption of atrazine from the biochar. Additionally, wheat root exudates can increase the desorption of atrazine from biochar-amended soil. The promotion of atrazine desorption by root exudates was more obvious in soils with low organic matter contents, where atrazine was mainly adsorbed by biochar. The aging interaction between the biochar and soil increased the total desorption rate and rapid desorbing fraction of the atrazine in the soil, most likely due to the reduction of the biochar sorption capacity in the aged biochar-amended soil.


Asunto(s)
Atrazina/uso terapéutico , Carbón Orgánico/química , Suelo/química , Adsorción , Atrazina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA