Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3736, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768419

RESUMEN

The thalamus is much more than a simple sensory relay. High-order thalamic nuclei, such as the mediodorsal thalamus, exert a profound influence over animal cognition. However, given the difficulty of directly recording from the thalamus in humans, next-to-nothing is known about thalamic and thalamocortical contributions to human cognition. To address this, we analysed simultaneously-recorded thalamic iEEG and whole-head MEG in six patients (plus MEG recordings from twelve healthy controls) as they completed a visual detection task. We observed that the phase of both ongoing mediodorsal thalamic and prefrontal low-frequency activity was predictive of perceptual performance. Critically however, mediodorsal thalamic activity mediated prefrontal contributions to perceptual performance. These results suggest that it is thalamocortical interactions, rather than cortical activity alone, that is predictive of upcoming perceptual performance and, more generally, highlights the importance of accounting for the thalamus when theorising about cortical contributions to human cognition.


Asunto(s)
Corteza Prefrontal , Tálamo , Animales , Humanos , Vías Nerviosas , Núcleos Talámicos , Percepción Visual
2.
Sci Rep ; 10(1): 6419, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286448

RESUMEN

It has been demonstrated that, while otherwise detrimental, noise can improve sensory perception under optimal conditions. The mechanism underlying this improvement is stochastic resonance. An inverted U-shaped relationship between noise level and task performance is considered as the signature of stochastic resonance. Previous studies have proposed the existence of stochastic resonance also in the human auditory system. However, the reported beneficial effects of noise are small, based on a small sample, and do not confirm the proposed inverted U-shaped function. Here, we investigated in two separate studies whether stochastic resonance may be present in the human auditory system by applying noise of different levels, either acoustically or electrically via transcranial random noise stimulation, while participants had to detect acoustic stimuli adjusted to their individual hearing threshold. We find no evidence for behaviorally relevant effects of stochastic resonance. Although detection rate for near-threshold acoustic stimuli appears to vary in an inverted U-shaped manner for some subjects, it varies in a U-shaped manner or in other manners for other subjects. Our results show that subjects do not benefit from noise, irrespective of its modality. In conclusion, our results question the existence of stochastic resonance in the human auditory system.


Asunto(s)
Percepción Auditiva/fisiología , Estimulación Acústica , Estimulación Eléctrica , Femenino , Humanos , Masculino , Ruido , Procesos Estocásticos , Adulto Joven
3.
Neuromodulation ; 23(3): 335-340, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31353758

RESUMEN

OBJECTIVE: Transcranial static magnetic field stimulation (tSMS) has proposed a new, promising, and simple non-invasive brain stimulation method. While several studies gained certain evidence about tSMS effects in the motor, somatosensory, and visual domains, there is still a controversial debate about its general effectiveness. In the present study, we investigated potential tSMS effects on auditory speech processing as measured by a dichotic listening (DL) task. MATERIALS AND METHODS: Fifteen healthy participants received in randomized order on three different days one session of either sham, tSMS over the left, or tSMS over the right auditory cortex (AC). Under stimulation, participants performed a standard DL task with consonant-vowel syllables. Simultaneously, we recorded electroencephalogram from central sites (Fz, Cz, Pz). RESULTS: TSMS over the left AC changed the behavioral performance and modulated auditory evoked potentials. Stimulation of the left AC significantly reduced the right ear advantage during the DL task and the N1 component of auditory evoked potentials in response to these syllables. CONCLUSIONS: The preliminary results of the present exploratory study demonstrate the ability of tSMS to modulate human brain activity on a behavioral as well as physiologic level. Furthermore, tSMS effects on acoustic processing may have clinical implications by fostering potential approaches for a treatment of speech-related pathologies associated with hyperexcitability in the AC.


Asunto(s)
Percepción del Habla/fisiología , Lóbulo Temporal/fisiología , Estimulación Magnética Transcraneal/métodos , Estimulación Acústica/métodos , Adulto , Pruebas de Audición Dicótica , Oído , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Masculino , Prohibitinas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA